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Abstract. It is well known that the cohomology of a tensor product is es-
sentially the tensor product of the cohomologies. We look at twisted tensor
products, and investigate to which extent this is still true. We give an explicit
description of the Ext-algebra of the tensor product of two modules, and under
certain additional conditions, describe an essential part of the Hochschild co-
homology ring of a twisted tensor product. As an application, we characterize
precisely when the cohomology groups over a quantum complete intersection
are finitely generated over the Hochschild cohomology ring. Moreover, both for
quantum complete intersections and in related cases we obtain a lower bound
for the representation dimension of the algebra.

1. Introduction

Given a field k and two k-algebras Λ and Γ, one may look at their tensor product
Λ ⊗k Γ. This is an algebra where multiplication is done componentwise. In other
words, we use the multiplications in Λ and Γ, and define elements of Λ and Γ to
commute with one another. Given a Λ-module M and a Γ-module N , it is well
known that

Ext∗Λ⊗kΓ(M ⊗k N, M ⊗k N) = Ext∗Λ(M, M)⊗k Ext∗Γ(N,N),

HH∗(Λ⊗k Γ) = HH∗(Λ)⊗k HH∗(Γ),

where⊗ is the usual tensor product, but with elements of odd degree anticommuting
(and where HH∗ denotes the Hochschild cohomology ring).

In this paper we shall study graded algebras and twisted tensor products. That
is, for two graded algebras Λ and Γ, we give their tensor product an algebra structure
by defining elements from Λ and Γ to commute up to certain scalars, depending on
the degrees of the elements. We denote these twisted tensor products by Λ ⊗t

k Γ.
Examples of algebras obtained in this way are quantum exterior algebras (see [5],
[6], [10]), and, more generally, quantum complete intersections (see [4], [7], [8]).

The first main result of this paper (Theorem 3.7) shows that the first formula
above holds for twisted tensor products. More precisely, we may make the identifi-
cation

Ext∗Λ⊗t
kΓ(M ⊗t

k N, M ⊗t
k N) = Ext∗Λ(M, M)⊗t̃

k Ext∗Γ(N,N),

where the twist on the right-hand side is the combination of the twist we started
with and the sign which already occurred in the classical case. This formula allows
us to give an explicit description of the Ext-algebra of the simple module over a
quantum complete intersection in Theorem 5.3. As for the second formula above,
we shall see (Remark 5.4) that in general it does not carry over to twisted tensor
products. However, in Theorem 4.7 we show that the Hochschild cohomology ring of
a twisted tensor product contains a subalgebra, which is the twisted tensor product
of corresponding subalgebras of the Hochschild cohomology rings of the factors.
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Under certain additional conditions, we show that these subalgebras are big enough
to contain all the information on finite generation and complexity (Corollary 4.8).
When finite generation holds, we may use these subalgebras and a result from [6] to
find a lower bound for the representation dimension of the twisted tensor product.

In the final section we apply these results to quantum complete intersections. In
particular, we show that the cohomology groups of such an algebra are all finitely
generated over the Hochschild cohomology ring if and only if all the commutator
parameters are roots of unity (Theorem 5.5). This allows us to give a lower bound
for the representation dimension of these algebras (Corollary 5.6), thus generalizing
the result of [8].

2. Notation

Throughout this paper, we fix a field k. All algebras considered are assumed to
be associative k-algebras.

2.1. Definition. Let A be an abelian group. An A-graded algebra is an algebra Λ
together with a decomposition Λ = ⊕a∈AΛa as k-vector spaces, such that Λa ·Λa′ ⊆
Λa+a′ . A module M over such a graded algebra Λ is a graded module if it has a
decomposition M = ⊕a∈AMa as k-vector spaces, such that Λa ·Ma′ ⊆ Ma+a′ . We
denote the category of finitely generated graded Λ-modules by Λ -modgr.

Let Λ, A and M be as above. We denote the degree of homogeneous elements
λ ∈ Λ and m ∈ M by |λ| and |m|, respectively. For an element a ∈ A we denote by
M〈a〉 the shift of M having the same Λ-module structure as M , but with M〈a〉a′ =
Ma′−a. Now let M ′ be another graded Λ-module. To distinguish between graded
and ungraded morphisms, we denote the set of all Λ-morphisms from M to M ′ by
HomΛ(M, M ′), and the set of degree preserving morphisms by grHomΛ(M, M ′).
With this notation we obtain a decomposition

HomΛ(M,M ′) = ⊕a∈A grHomΛ(M, M ′〈a〉).
Setting HomΛ(M,M ′)a = grHomΛ(M, M ′〈a〉) turns EndΛ(M) and EndΛ(M ′) into
A-graded algebras, and Hom(M, M ′) into a graded EndΛ(M)-EndΛ(M ′) bimodule.
Since M has a graded projective resolution P, we can also define Exti,a

Λ (M, M ′) def=
Hi(grHom(P,M ′〈a〉)). It follows that Ext∗Λ(M,M) and Ext∗Λ(M ′,M ′) are (Z⊕A)-
graded algebras, and that Ext∗Λ(M, M ′) is a graded Ext∗Λ(M, M)-Ext∗Λ(M ′,M ′)
bimodule.

Our main objects of study in this paper are twisted tensor products of two graded
algebras, a concept we now define.

2.2. Definition/Construction. Let A and B be abelian groups, let Λ be an A-
graded algebra and Γ a B-graded algebra. Let t : A⊗Z B - k× be a homomor-
phism of abelian groups, where k× denotes the multiplicative group of nonzero ele-
ments in k. We write t〈a|b〉 = t(a⊗b), and, by abuse of notation, also t〈λ|γ〉 = t〈|λ|||γ|〉

for homogeneous elements λ ∈ Λ and γ ∈ Γ. The (t-)twisted tensor product of Λ
and Γ is the algebra Λ⊗t

k Γ defined by

Λ⊗t
k Γ = Λ⊗k Γ as k-vector spaces,

(λ⊗ γ) ·t (λ′ ⊗ γ′) def= t〈λ′|γ〉λλ′ ⊗ γγ′,

where λ, λ′ ∈ Λ and γ, γ′ ∈ Γ are homogeneous elements.

A straightforward calculation shows that this is indeed a well defined algebra.
By defining (Λ⊗t

k Γ)a,b to be Λa ⊗k Γb, this algebra becomes (A⊕B)-graded.
We now define what it means for an algebra to have finitely generated cohomol-

ogy.
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2.3. Definition. Let Λ be an algebra. A commutative ring of cohomology operators
is a commutative Z-graded k-algebra H together with graded k-algebra morphisms
φM : H - Ext∗Λ(M,M), for every M ∈ Λ -mod, such that for every pair M, M ′ ∈
Λ -mod the induced H-module structures on Ext∗Λ(M,M ′) via φM and φM ′ coincide.
If A is an abelian group and Λ is A-graded, then we require that H be a (Z⊕ A)-
graded algebra, and that the maps φM are morphisms of (Z⊕A)-graded algebras.

The main example of such a ring H is the even Hochschild cohomology ring of an
algebra. Namely, by [18] the Hochschild cohomology ring is graded commutative,
so its even part is commutative. Note that whenever an algebra is graded, then
so is its Hochschild cohomology ring, and its even part is a commutative ring of
graded cohomology operators.

2.4. Definition. An algebra Λ satisfies the finite generation hypothesis Fg if it
has a commutative ring of operators H which is Noetherian and of finite type (i.e.
dimk Hi < ∞ for all i), and such that for any M,M ′ ∈ Λ -mod the H-module
Ext∗Λ(M,M ′) is finitely generated.

Group algebras of finite groups and finite dimensional complete intersections
are examples of algebras satisfying Fg (cf. [11] and [3]). For more general finite
dimensional algebras, this concept was first studied in [9], using the Hochschild co-
homology ring. We end this section with some remarks concerning finite generation
of cohomology.

2.5. Remarks. (i) Assume that Λ is a finite dimensional algebra, and let H be a
commutative Noetherian ring of cohomology operators. Then all Ext∗Λ(M, M ′) are
finitely generated over H if and only if Ext∗Λ(Λ/ Rad Λ,Λ/ RadΛ) is. This follows
from an induction argument on the length of M and M ′.

(ii) By [16, Proposition 5.7] the following are equivalent for an algebra Λ.
(1) Λ satisfies Fg with respect to its even Hochschild cohomology ring HH2∗(Λ),
(2) Λ satisfies Fg with respect to some subalgebra of its even Hochschild co-

homology ring.

3. Tensor products of graded modules

Throughout this section, we fix two abelian groups A and B, together with an
A-graded algebra Λ and a B-graded algebra Γ. Moreover, we fix a homomorphism
t : A⊗Z B - k× of abelian groups. Given a graded Λ-module and a graded Γ-
module, we construct a Λ⊗t

k Γ-module, and study homomorphisms and extensions
between such modules.

3.1. Definition/Construction. Given modules M ∈ Λ -modgr and N ∈ Γ -modgr,
the tensor product M ⊗k N becomes a graded Λ⊗t

k Γ-module by defining

(λ⊗ γ) · (m⊗ n) def= t〈m|γ〉λm⊗ γn.

We denote this module by M⊗t
kN , its grading is given by (M⊗t

kN)a,b = Ma⊗kNb.

We now prove some elementary results on these tensor products, the first of
which shows that the tensor product of two shifted modules is the shifted tensor
product.

3.2. Lemma. Given modules M ∈ Λ -modgr and N ∈ Γ -modgr, the graded Λ⊗t
k Γ-

modules M〈a〉 ⊗t
k N〈b〉 and (M ⊗t

k N)〈a, b〉 are isomorphic via the map

M〈a〉 ⊗t
k N〈b〉 - (M ⊗t

k N)〈a, b〉
m⊗ n - t〈a|n〉m⊗ n
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Proof. The given map is clearly bijective, and it is straightforward to verify that it
is a homomorphism. ¤

The following lemma shows that the tensor product of projective modules is
again projective. Given a graded algebra ∆, we denote by ∆ -proj the category of
finitely generated projective ∆-modules, and by ∆ -projgr the category of finitely
generated graded projective ∆-modules.

3.3. Lemma. Given modules P ∈ Λ -projgr and Q ∈ Γ -projgr, the tensor product
P ⊗t

k Q is a graded projective Λ⊗t
k Γ-module.

Proof. By Lemma 3.2 we only have to consider the case P = Λ and Q = Γ. In this
case P ⊗t

k Q = Λ⊗t
k Γ, so the lemma holds. ¤

As the following result shows, the tensor product of morphism spaces is the
morphism space of tensor products.

3.4. Lemma. Given modules M, M ′ ∈ Λ -modgr and N, N ′ ∈ Γ -modgr, the natural
map

grHomΛ(M, M ′)⊗k grHomΓ(N, N ′) - grHomΛ⊗t
kΓ(M ⊗t

k N,M ′ ⊗t
k N ′)

is an isomorphism.

Proof. If M = Λ〈a〉 and N = Γ〈b〉 for some a ∈ A and b ∈ B, then

grHomΛ(Λ〈a〉 ,M ′)⊗k grHomΓ(Γ〈b〉 , N ′) = M ′
−a ⊗k N ′

−b

= (M ′ ⊗t
k N ′)−a,−b

= grHom((Λ⊗t
k Γ)〈a, b〉 ,M ′ ⊗t

k N ′)

= grHom(Λ〈a〉 ⊗t
k Γ〈b〉),M ′ ⊗t

k N ′).

Now note that both sides commute with cokernels in the M and N position. ¤

Note that given degree a and b morphisms ϕ : M - M ′ and ψ : N → N ′, we
obtain a degree (a, b)-morphism

ϕ⊗ ψ : M ⊗N - M ′ ⊗N ′

by composing the maps from Lemmas 3.4 and 3.2. Explicitly, the map is given by

(m⊗ n) · (ϕ⊗ ψ) = t〈ϕ|n〉m · ϕ⊗ n · ψ
(we think of a module as a right module over its endomorphism ring). By applying
this to the situation M = M ′ and N = N ′, we obtain the following result, show-
ing that the endomorphism ring of a tensor product is the tensor product of the
endomorphism rings.

3.5. Lemma. Let M ∈ Λ -modgr and N ∈ Γ -modgr. Then

EndΛ⊗t
kΓ(M ⊗t

k N) = EndΛ(M)⊗t
k EndΓ(N).

As for projective resolutions, the behavior is also as expected. Namely, the
following result shows that the tensor product of two projective resolutions is again
a projective resolution.

3.6. Lemma. Given modules M ∈ Λ -modgr and N ∈ Γ -modgr with graded projec-
tive resolutions

P : · · · - Pi
- · · · - P1

- P0
- M - 0,

Q : · · · - Qi
- · · · - Q1

- Q0
- N - 0,

the total complex of P⊗t
k Q is a graded projective resolution of M ⊗t

k N .
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Proof. By Lemma 3.3 all the terms of the total complex Tot(P⊗t
kQ) of P⊗t

kQ are
projective. Moreover, since k is a field Tot(P⊗t

k Q) is exact. ¤

We are now ready to prove the main result of this section. It shows that the
Ext-algebra of a tensor product is the tensor product of the Ext-algebras.

3.7. Theorem. If M, M ′ ∈ Λ -modgr and N, N ′ ∈ Γ -modgr are modules, then

Ext∗Λ⊗t
kΓ(M ⊗t

k N, M ⊗t
k N) = Ext∗Λ(M, M)⊗t̃

k Ext∗Γ(N,N),

with t̃((i, a), (j, b)) = (−1)ijt〈a|b〉. Moreover

Ext∗Λ⊗t
kΓ(M ⊗t

k N, M ′ ⊗t
k N ′) = Ext∗Λ(M,M ′)⊗t̃

k Ext∗Γ(N, N ′)

as Ext∗Λ(M, M)⊗t
k Ext∗Γ(N, N)− Ext∗Λ(M ′, M ′)⊗t

k Ext∗Γ(N ′, N ′) bimodule.

Proof. Let P and Q be graded projective resolutions of M and N receptively. Then
by Lemma 3.6 Tot(P⊗t

k Q) is a projective resolution of M ⊗t
k N , and therefore

Ext∗Λ⊗t
kΓ(M ⊗t

k N, M ′ ⊗t
k N ′) = H∗(HomΛ⊗t

kΓ(Tot(P⊗t
k Q),M ′ ⊗t

k N ′)

= H∗(Tot(HomΛ⊗t
kΓ(P⊗t

k Q),M ′ ⊗t
k N ′)

= H∗(Tot(HomΛ(P,M ′)⊗t
k HomΓ(Q, N ′)))

= Ext∗Λ(M,M ′)⊗t̃
k Ext∗Γ(N, N ′).

Here the third equality holds by Lemma 3.4, whereas the final one holds since k
is a field. The multiplication is induced by the multiplication of morphisms in
Lemma 3.5, with the additional signs needed because of the signs added when
passing from the double complex to its total complex. ¤

We end this section with the following result, which was shown in [17, Corol-
lary 3.3 and Lemma 3.4] for untwisted tensor products (in which case we may forget
about the grading). It will help us find upper bounds for the representation dimen-
sion of twisted tensor products. Given an algebra ∆, we denote by gld ∆ its global
dimension.

3.8. Proposition. Let M ∈ Λ -modgr and N ∈ Γ -modgr be graded modules, such
that M generates and cogenerates Λ -mod, and such that N generates and cogen-
erates Γ -mod. Then M ⊗t

k N is a generator-cogenerator of Λ ⊗t
k Γ -mod, and

gldEndΛ⊗t
kΓ(M ⊗t

k N) = gldEndΛ(M) + gld EndΓ(N).

4. Tensor products of bimodules

Throughout this section, we keep the notation from the last section. That is,
we fix two abelian groups A and B, together with an A-graded algebra Λ and a B-
graded algebra Γ. Moreover, we fix a homomorphism t : A⊗ZB - k× of abelian
groups. Given an algebra ∆, we denote by ∆e its enveloping algebra ∆ ⊗k ∆op.
Note that if ∆ is G-graded, where G is some abelian group, then so is ∆e, and ∆
is a graded ∆e-module.

4.1. Definition/Construction. Given modules X ∈ Λe -modgr and Y ∈ Γe -modgr,
the tensor product X ⊗k Y becomes a graded (Λ⊗t

k Γ)e-module by defining

(λ⊗ γ)(x⊗ y)(λ′ ⊗ γ′) def= t〈x|γ〉t〈λ′|y〉t〈λ′|γ〉λxλ′ ⊗ γyγ′.

We denote this bimodule by X ⊗t
k Y .
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4.2. Remark. In general the graded (Λ ⊗t
k Γ)e-modules X〈a〉 ⊗t

k Y〈b〉 and (X ⊗t
k

Y )〈a, b〉 are not isomorphic. To see this, take Λ = k[x]/(x2) and Γ = k, both Z-
graded, and with x in degree one. Furthermore, choose a nonzero element q ∈ k,
and define a homomorphism t : Z ⊗Z Z → k× by t〈a|b〉 = qab. If the (Λ ⊗t

k Γ)e-
modules Λ〈a〉 ⊗t

k Γ〈b〉 and (Λ⊗t
k Γ)〈a, b〉 were isomorphic, then there would exist an

isomorphism

(Λ⊗t
k Γ)〈a, b〉 f−→ Λ〈a〉 ⊗t

k Γ〈b〉
such that

1⊗ 1 7→ α(1⊗ 1) + β(x⊗ 1),
where α and β are scalars with α 6= 0. But then

qbα(x⊗ 1) = f(1⊗ 1) · (x⊗ 1)
= f(x⊗ 1)
= (x⊗ 1) · f(1⊗ 1)
= α(x⊗ 1)

in Λ〈a〉 ⊗t
k Γ〈b〉, hence when qb 6= 1 the modules cannot be isomorphic.

The following results are analogues of Lemmas 3.3, 3.4 and 3.6. We prove only
the first result, as the proofs of the other two results are more or less the same as
those of Lemmas 3.4 and 3.6.

4.3. Lemma. Given modules X ∈ Λe -projgr and Y ∈ Γe -projgr, the tensor product
X ⊗t

k Y is a graded projective (Λ⊗t
k Γ)e-module.

Proof. It suffices to show that Λe〈a〉⊗t
k Γe〈b〉 is graded projective for any a ∈ A and

b ∈ B. This can be seen by noting that the map

(Λ⊗t
k Γ)e〈a, b〉 - Λe〈a〉 ⊗t

k Γe〈b〉
(l ⊗ g)⊗ (l′ ⊗ g′) - t〈l′|g〉t〈a|g〉t〈l′|b〉(l ⊗ l′)⊗ (g ⊗ g′)

is an isomorphism of graded (Λ⊗t
k Γ)e-modules. ¤

4.4. Lemma. Given modules X, X ′ ∈ Λe -modgr and Y, Y ′ ∈ Γe -modgr, the natural
map

grHomΛe(X,X ′)⊗k grHomΓe(Y, Y ′) - grHom(Λ⊗t
kΓ)e(X ⊗t

k Y,X ′ ⊗t
k Y ′)

is an isomorphism.

4.5. Lemma. Given modules X ∈ Λe -modgr and Y ∈ Γe -modgr with graded pro-
jective bimodule resolutions

P : · · · - Pi
- · · · - P1

- P0
- X - 0,

Q : · · · - Qi
- · · · - Q1

- Q0
- Y - 0,

the total complex of P⊗t
k Q is a graded projective bimodule resolution of X ⊗t

k Y .

Now note that for a fixed b ∈ B the map t induces a morphism t〈−|b〉 : A - k×

(and similarly for a fixed a ∈ A). With this notation, we make the following
observation.

4.6. Lemma. Let a′ ∈ ∩b∈B Ker t〈−|b〉 ≤ A and b′ ∈ ∩a∈A Ker t〈a|−〉 ≤ B. Then
the map

Λ〈a′〉 ⊗t
k Γ〈b′〉 - (Λ⊗t

k Γ)〈a, b〉
λ⊗ γ - λ⊗ γ

is an isomorphism of graded (Λ⊗t
k Γ)e-modules.
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Using the above notation, we now prove the main result of this section. It shows
that Hochschild cohomology commutes with twisted tensor products, provided we
only consider the graded parts corresponding to the subgroups ∩b∈B Ker t〈−|b〉 ≤ A
and ∩a∈A Ker t〈a|−〉 ≤ B.

4.7. Theorem. Let A′ = ∩b∈B Ker t〈−|b〉 ≤ A and B′ = ∩a∈A Ker t〈a|−〉 ≤ B. Then
there is an isomorphism

HH∗,A
′
(Λ)⊗(−1)∗∗

k HH∗,B
′
(Γ) - HH∗,A

′⊕B′(Λ⊗t
k Γ),

where (−1)∗∗ denotes the morphism mapping ((i, a′), (j, b′)) to (−1)ij.

Proof. Let P and Q be graded bimodule projective resolutions of Λ and Γ, respec-
tively. Given a ∈ A and b ∈ B, the same arguments as in the proof of Theorem 3.7
give

HH∗,a,b(Λ⊗t
k Γ) = H∗(grHom(Λ⊗t

kΓ)e(Tot(P⊗t
k Q, (Λ⊗t

k Γ)〈a, b〉)))
= H∗(Tot(Hom(Λ⊗t

kΓ)e(P⊗t
k Q, (Λ⊗t

k Γ)〈a, b〉)))
and

H∗(Tot(Hom(Λ⊗t
kΓ)e(P⊗t

k Q, Λ〈a〉 ⊗t
k Γ〈b〉)))

= H∗(Tot(HomΛe(P, Λ〈a〉)⊗t
k HomΓe(Q,Γ)))

= HH∗,a(Λ)⊗t̃
k HH∗,b(Γ),

where t̃ = (−1)∗∗ · t as in Theorem 3.7. Now if a ∈ A′ and b ∈ B′, then from
Lemma 4.6 we see that we may identify

H∗(Tot(Hom(Λ⊗t
kΓ)e(P⊗t

k Q, (Λ⊗t
k Γ)〈a, b〉)))

with
H∗(Tot(Hom(Λ⊗t

kΓ)e(P⊗t
k Q, Λ〈a〉 ⊗t

k Γ〈b〉))).
Finally, note that HH∗,A

′
(Λ) ⊗t̃

k HH∗,B
′
(Γ) = HH∗,A

′
(Λ) ⊗(−1)∗∗

k HH∗,B
′
(Γ), since

all degrees occurring are in the kernel of t. ¤
We end this section with the following corollary to Theorem 4.7. It shows that,

given certain conditions, if Λ and Γ satisfy Fg, then so does Λ⊗t
k Γ.

4.8. Corollary. With the same notation as in Theorem 4.7, assume Λ and Γ satisfy
Fg with respect to their even Hochschild cohomolgy rings HH2∗(Λ) and HH2∗(Γ).
Moreover, suppose [A :A′] and [B :B′] are finite, and that Λ/ RadΛ and Γ/ Rad Γ
are separable over k. Then Λ ⊗t

k Γ satisfies Fg with respect its even Hochschild
cohomolgy ring HH2∗(Λ⊗t

k Γ).

Proof. Since [A : A′] is finite, the algebra HH2∗,A(Λ) is a finitely gener-
ated module over HH2∗,A′(Λ). Therefore, since Λ satisfies Fg, we see that
Ext∗Λ(Λ/ Rad Λ,Λ/ RadΛ) is finitely generated over HH2∗,A′(Λ). The same argu-
ments apply to Γ, hence

Ext∗Λ(Λ/ RadΛ,Λ/ RadΛ)⊗t
k Ext∗Γ(Γ/ RadΓ,Γ/ RadΓ)

is finitely generated over HH2∗,A′(Λ) ⊗k HH2∗,B′(Γ). Then by Theorems 3.7 and
4.7, we see that

Ext∗Λ⊗t
kΓ(Λ/ RadΛ⊗t

k Γ/ RadΓ, Λ/ RadΛ⊗t
k Γ/ Rad Γ)

must be a finitely generated HH2∗,A′⊕B′(Λ ⊗t
k Γ)-module. Finally, since Λ/ RadΛ

and Γ/ RadΓ are separable over k, the equality

Λ/Rad Λ⊗t
k Γ/ Rad Γ = (Λ⊗t

k Γ)/ Rad(Λ⊗t
k Γ)
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holds. The claim now follows from Remarks 2.5. ¤

5. Quantum complete intersections

We now apply the cohomology theory of twisted tensor products to the class of
finite dimensional algebras known as quantum complete intersections. Throughout
this section, fix integers n ≥ 1 and a1, . . . , an ≥ 2, together with a nonzero element
qij ∈ k for every 1 ≤ i < j ≤ n. We define the algebra Λ by

Λ def= k 〈x1, . . . , xn〉 /(xai
i , xjxi − qijxixj),

a codimension n quantum complete intersection in its most general form. This is a
selfinjective algebra of dimension

∏
ai. We shall determine precisely when such an

algebra satisfies Fg, and consequently obtain a lower bound for its representation
dimension.

Note that Λ is Zn graded by |xi| def= (0, . . . , 1, . . . , 0), the ith unit vector. In
particular, we use the Z-grading |x| = 1 for the special case of a codimension one
quantum complete intersection k[x]/(xa). The following observation allows us to
study the cohomology inductively, starting with the well known case k[x]/(xa).

5.1. Lemma. Let Λ′ be the subalgebra of Λ generated by x1, . . . , xn−1. Then

Λ = Λ′ ⊗t
k k[xn]/(xan

n ),

where t〈d1,...,dn−1|dn〉 def=
∏n−1

i=1 qdidn
in .

As for quantum complete intersections of codimension one, that is, truncated
polynomial algebras, their cohomology is well known. We record this in the follow-
ing lemma.

5.2. Lemma. If Γ = k[x]/(xa), then
(1) HH2∗(Γ) = k[x, z]/(xa, axa−1z),

(2) Ext∗Γ(k, k) =
{

k[y, z]/(y2 = z) if a = 2
k[y, z]/(y2) if a 6= 2 ,

with |x| = 0, |y| = 1 and |z| = 2. In particular, the algebra Γ satisfies Fg with
respect to its even Hochschild cohomology ring.

Proof. The first part is [12, Theorem 3.2], the second part can be read off directly
from the projective resolution. ¤

Using this lemma and Theorem 3.7, we obtain the following result on the Ext-
algebra of the simple module of a quantum complete intersection.

5.3. Theorem. The Ext-algebra of k is given by

Ext∗Λ(k, k) = k 〈y1, . . . , yn, z1, . . . , zn〉 /I,

where I is the ideal in k 〈y1, . . . , yn, z1, . . . , zn〉 defined by the relations



yizi − ziyi

yjyi + qijyiyj i < j
yjzi − qai

ij ziyj i < j

zjyi − q
aj

ij yizj i < j

zjzi − q
aiaj

ij zizj i < j

y2
i − zi ai = 2
y2

i ai 6= 2




5.4. Remark. Lemma 5.2 shows that if Γ and ∆ are arbitrary algebras, then the
algebra HH∗(Γ)⊗etk HH∗(∆) does not in general embed into HH∗(Γ⊗t

k ∆). Namely,
the latter is always graded commutative, whereas HH∗(Γ)⊗etk HH∗(∆) need not be.
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We are now ready to characterize precisely when a quantum complete intersection
satisfies Fg.

5.5. Theorem. The following are equivalent.
(1) Λ satisfies Fg,
(2) Λ satisfies Fg with respect to its even Hochschild cohomology ring HH2∗(Λ),
(3) all the commutators qij are roots of unity.

Proof. The implication (2) ⇒ (1) is obvious, and the implication (3) ⇒ (2) follows
from Corollary 4.8. To show (1) ⇒ (3), we assume that (1) holds but not (3), so
there are i and j such that qij is not a root of unity. By (1), the Ext-algebra of k
is finitely generated as a module over its center, hence so is every quotient of this
ring. By factoring out all yk, zk with k 6∈ {i, j} and {yk | k ∈ {i, j} and y2

k = 0},
we obtain a ring of the form k 〈r, s〉 /(sr− qrs), where q is not a root of unity. The
center of this ring is trivial, hence the ring cannot be finitely generated over its
center, a contradiction. ¤

As a corollary, we obtain a lower bound for the representation dimension of a
quantum complete intersection. Recall that the representation dimension of a finite
dimensional algebra ∆ is defined as

repdim∆ def= inf{gldEnd∆(M)},
where the infimum is taken over all the finitely generated ∆-modules which generate
and cogenerate ∆ -mod.

5.6. Corollary. Define the integer c ≥ 0 by

c
def= max{card I | I ⊆ {1, . . . , n} and qij is a root of unity ∀i, j ∈ I, i < j}.

Then repdimΛ ≥ c + 1. In particular, if all the commutators qij are roots of unity,
then repdim Λ ≥ n + 1.

In order to prove this result we need to recall some notions. Let ∆ be an algebra,
and let M be a finitely generated ∆-module with minimal projective resolution

· · · - P2
- P1

- P0
- M - 0,

say. The complexity of M , denoted cx M , is defined as

cx M
def= inf{t ∈ N ∪ {0} | ∃r ∈ R such that dimk Pn ≤ rnt−1 for n À 0}.

Now let V be a positively graded k-vector space of finite type, i.e. dimk Vn < ∞
for all n. The rate of growth of V , denoted γ(V ), is defined as

γ(V ) def= inf{t ∈ N ∪ {0} | ∃r ∈ R such that dimk Vn ≤ rnt−1 for n À 0}.
It is well known that the complexity of a module M equals γ (Ext∗∆(M, ∆/ Rad∆)).
Now suppose ∆ is selfinjective, and denote by ∆ -mod the stable module category of
∆ -mod, that is, the category obtained from ∆ -mod by factoring out all morphisms
which factor through a projective module. This is a triangulated category, and we
denote by dim(∆ -mod) its dimension, as defined in [15].

Proof of Corollary 5.6. Choose a subset I of {1, . . . , n} realizing the maximum in
the definition of the integer c, and let Λ′ be the subalgebra of Λ generated by
the xi with i ∈ I. By Theorem 5.5 the algebra Λ′ satisfies Fg, and so from [6,
Theorem 3.1] we see that dim(Λ′ -mod) ≥ cxΛ′ k − 1. Moreover, by Theorem 5.3
the complexity of k as a Λ′-module equals card I, giving dim(Λ′ -mod) ≥ card I−1.

The forgetful functor Λ -mod - Λ′ -mod is exact, dense, and maps projec-
tive Λ-modules to projective Λ′-modules. Therefore it induces a dense triangle
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functor Λ -mod - Λ′ -mod, and so from [15, Lemma 3.4] we obtain the inequal-
ity dim(Λ -mod) ≥ dim(Λ′ -mod). Finally, by [14, Proposition 3.7] the inequality
repdim Λ ≥ dim(Λ -mod) + 2 holds, and the proof is complete. ¤

5.7. Remark. By [8, Theorem 3.2] the inequality repdim Λ ≤ 2n always holds.

It was shown in [13] that the representation dimension of the truncated polyno-
mial algebra k[x, y]/(x2, ya) is three. Using their construction and exactly the same
proof, one can show that the quantum complete intersection Γ = k 〈x, y〉 /(yx −
qxy, x2, ya) has a generator-cogenerator M which is graded with gldEndΓ(M) = 3.
Moreover, for a quantum exterior algebra Γ on n variables (that is, a codimen-
sion n quantum complete intersection where all the defining exponents are 2), the
global dimension of the endomorphism ring of the graded generator-cogenerator
⊕Γ/(RadΓ)i is n + 1 (cf. [1]). Using this and Proposition 3.8, we obtain the fol-
lowing improvement of Remark 5.7.

5.8. Theorem. If h = card{i | ai = 2}, then

repdimΛ ≤
{

2n− h if h ≤ n/2
2n− h + 1 if h > n/2.

Proof. In the first case decompose the algebra into h parts of the form k 〈x, y〉 /(yx−
qxy, x2, ya), and n−2h parts of the form k[x]/(xa). Adding up the global dimensions
of the endomorphism rings of the graded Auslander generators (which we may do
by Proposition 3.8), we obtain h · 3 + (n− 2h) · 2 = 2n− h. In the second case, we
decompose the algebra into n− h parts of the form k 〈x, y〉 /(yx− qxy, x2, ya), and
a quantum exterior algebra on 2h − n variables, and add up global dimensions as
above. ¤
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