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Abstract. Any cluster-tilted algebra is the relation extension of a
tilted algebra. Given the distribution of a cluster-tilting object in the
Auslander-Reiten quiver of the cluster category, we present a method
to construct all tilted algebras whose relation extension is the endomor-
phism ring of this cluster-tilting object.

1. Introduction

The cluster categories of finite dimensional hereditary algebras H were
introduced in [BMRRT] in order to give a categorical model to better un-
derstand the cluster algebras of Fomin and Zelevinsky [FZ]. The theory
of cluster-tilted algebras was initiated in [BMR1], and the first link from
cluster algebras to tilting theory was given in [MRZ].

There is a close connection between tilted algebras and cluster-tilted alge-
bras (see Section 2 for definitions and notation). One such connection is the
following: From the quiver of a tilted algebra one can obtain the quiver of
a cluster-tilted algebra by adding arrows where there are minimal relations
(this was proved for some cases in [BR] and [BRS], and in full generality
in [ABS1]). In this paper we explore the opposite problem, i.e. to remove
arrows from the quiver of a cluster-tilted algebra in such a way that the
resulting quiver is the quiver of a tilted algebra.

More precisely, by [ABS1, 1.1] any cluster-tilted algebra is the relation
extension of some tilted algebra. Given a cluster-tilted algebra we wish to
find all tilted algebras which have the given cluster-tilted algebra as rela-
tion extension. We will call these tilted algebras maximal tilted subalgebras
of the cluster-tilted algebra. For an arbitrary cluster-tilted algebra, given
the distribution of a corresponding cluster-tilting object in the Auslander-
Reiten quiver of the cluster category, we present an algorithm to construct
all maximal tilted subalgebras.

Note that, by [BMR2] and [CCS], all quivers of cluster-tilted algebras
are constructed by quiver mutation from acyclic quivers. In the case of a
cluster-tilted algebra of finite type, in [BOW] the authors show explicitly
how to determine the distribution of the corresponding cluster-tilting object
in the cluster category. So in this way we can construct the input of our
algorithm.

Our construction consists of the following two main steps:
First we use local slices to lift the cluster-tilting object to a tilting com-

plex in the derived category. The theory of local slices was introduced
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in [ABS2] as a way to decide whether two tilted algebras have the same
relation-extension algebra. The maximal tilted subalgebras are precisely
the endomorphism rings of these tilting complexes. We show that there are
certain equivalence classes of local slices which produce the same maximal
tilted subalgebras. Moreover we can move from one equivalence class to
another (transitively) by “jumping trenches” (see Construction 3.15).

Second we use generalized 2-APR tilts to keep track of the maximal tilted
algebras coming up for the various equivalence classes of local slices. The
procedure of n-APR tilting was introduced in [IO] as a generalization of
APR tilting (see [APR]) in order to generate module categories that have a
cluster-tilting object. For n = 2 the effect of this operation on the quivers
and relations of the algebras is completely understood. Here we generalize
2-APR tilting to complexes in the derived category, and show that jumping
trenches is a special case of this generalization. Hence we obtain control
over the quivers and relations of the algebras produced in this way.

The paper is organized as follows:
In Section 2 we will recall some basic results on mutation of quivers,

cluster categories, cluster-tilted algebras of finite type and their relations.
In Sections 3 and 4 we develop the theory for the two steps described

above.
In Section 5 we sum up the algorithm to find all the maximal tilted

subalgebras of a given cluster-tilted algebra and illustrate it with an example.
Finally, in Section 6 we sketch how to apply the algorithm for cluster-

tilted algebras of infinite type.
After completing this work we have been informed that similar results

have been obtained independently by Bordino, Fernández, and Trepode
([BFT]).

2. Background

2.1. Quiver mutation. Let Q be a finite quiver with no loops or 2-cycles
and k a vertex. To mutate at the vertex k and obtain the quiver µk(Q) we
do the following.

(a) Suppose there are r ≥ 0 arrows i → k, s ≥ 0 arrows k → j and t
arrows j → i in Q, where a negative number of arrows means arrows
in the opposite direction. Then there are r arrows k → i, s arrows
j → k and t− rs arrows j → i in µk(Q).

(b) All other arrows are kept the same.
We say that Q and µk(Q) are mutation equivalent. Observe that µ2

k(Q) =
Q. The collection of all quivers that are mutation equivalent to Q is called
the mutation class of Q. It can be easily seen that this definition is a special
case of matrix mutation, as it appears in the definition of cluster algebras
([FZ]).

2.2. Cluster categories and cluster-tilted algebras. Let K be an al-
gebraically closed field and H a connected hereditary finite dimensional K-
algebra (which we will only call hereditary algebra for the rest of the paper).
Any such algebra H is Morita equivalent to a path algebra KQ for some finite
quiver Q. An H-module T is called a tilting module if satisfies the following
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two requirements: Ext1
H(T, T ) = 0 and the number of non-isomorphic inde-

composable direct summands of T is equal to the number of non-isomorphic
simple modules in modH. The endomorphism algebra EndH(T )op is called
a tilted algebra (see [HR] for further details).

Let D = Db(modH) be the bounded derived category. It comes equipped
with two automorphisms, the shift functor [1] :D → D and the Nakayama
functor ν = −⊗LH DH where D denotes the duality on modH with respect
to the base field K (see [Ha]). Then one defines the Auslander-Reiten trans-
lation τ = ν[−1] :D → D. Consider the automorphism F = τ−1[1] of D
and define the cluster category C = CH as the orbit category D/F . The
objects of C are the objects of D, while HomC(A,B) = ⊕i HomD(A,F iB)
(see [BMRRT] for more details).

An object T of C is called a (cluster-) tilting object if Ext1
C(T, T ) = 0 and T

is maximal with respect to this property, i.e. if Ext1
C(T⊕X,T⊕X) = 0, then

X is a direct summand of a direct sum of copies of T . The endomorphism
algebra EndC(T )op of a tilting object T is called a cluster-tilted algebra.

Let B = EndC(T )op be a cluster-tilted algebra with C = CH the cluster
category of some hereditary algebra H, and T a tilting object in C. We
then have that B is of finite representation type if and only if H is of finite
representation type [BMR1]. In this case H is the path algebra of a Dynkin
quiver Q, and the underlying graph ∆ of Q is one of {An, Dm, E6, E7, E8}
for n ≥ 1 and m ≥ 4. We say that B is cluster-tilted of type ∆.

We now present a useful theorem from [BMR1].

Theorem 2.1 ([BMR1, 2.2]). Let T be a tilting object in C. The func-
tor HomC(T,−) : C → mod EndC(T )op induces an equivalence C/ add(τT ) '
mod EndC(T )op. This functor commutes with the AR-translate in both cat-
egories and sends AR-triangles to AR-sequences.

2.3. Cluster-tilted algebras and trivial extensions. Let C be a finite
dimensional algebra of global dimension at most two and consider the C−C-
bimodule Ext2

C(DC,C). We call the trivial extension C n Ext2
C(DC,C) the

relation-extension of C. This definition plays a very important role in the
theory of cluster-tilted algebras, as the following theorem shows.

Theorem 2.2 ([ABS1, 3.4]). An algebra B is cluster-tilted if and only if
there exists a tilted algebra C such that B is the relation-extension of C.

Let B be a cluster-tilted algebra. From [BMRRT, 3.3] we know that
there exists a hereditary algebra H and a tilting H-module T ′ such that
B = EndC(T )op, where C is the cluster category of H and T is the tilting
object induced by T ′, i.e. T is the image of T ′ under the natural embed-
ding i : modH → C. Consider now the tilted algebra C = EndH(T ′)op.
Then we have that B ' EndH(T ′)op n HomD(T ′, FT ′) ([Z, proof of 3.1]).
Now for the proof of the Theorem 2.2 above, observe that Ext2

C(DC,C) '
HomD(T ′, FT ′).

Let S be a subset of the arrows of QB, the quiver B. As in [BRS] we call
the set S admissible1 if S contains exactly one arrow from each full oriented
cycle, and no other arrows. Recall that an oriented cycle in a quiver is called

1Called admissible cut in [BFPPT].
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full if there are no repeated vertices and if the subquiver generated by the
cycle contains no further arrows.

3. Cluster-tilted algebras and local slices

In this section we discuss the theory of local slices, which lies behind our
procedure to find all the maximal tilted subalgebras C of a given cluster-
tilted algebra B, where maximal means that C n Ext2(DC,C) = B.

Let Q = (Q0, Q1) be a quiver without oriented cycles and C = CQ its
cluster category. We fix a cluster-tilting object T = ⊕aTa in C, where
each Ta is indecomposable for every a ∈ Q0. Then we have the cluster-
tilted algebra B = EndC(T )op and the induced decomposition B = ⊕aBa in
indecomposable projective B-modules.

Recall that a path x = x0 → x1 → . . . → xt = y in ΓC is sectional if, for
each i with 0 < i < t, we have τxi+1 6= xi−1.

Definition 3.1. A local slice in C is a full subquiver Σ of ΓC such that:
(a) if x ∈ Σ0 and x→ y is an arrow, then either y ∈ Σ0 or τy ∈ Σ0.
(b) if y ∈ Σ0 and x→ y is an arrow, then either x ∈ Σ0 or τ−1x ∈ Σ0.
(c) Σ is sectionally convex, i.e. if x = x0 → x1 → . . . → xt = y is a

sectional path in ΓC , such that x, y ∈ Σ0, then xi ∈ Σ0 for all i.
(d) |Σ0| = |Q0|.

By abuse of notation we will sometimes view Σ as a set of indecomposable
objects, and sometimes as the subcategory consisting of all finite direct sums
of these indecomposables.

Remark. Let Σ be a local slice in C and T a cluster-tilting object such that
Σ∩ addC(τT ) = 0. In this case, we say that Σ is a local slice in C \ add(τT ).
Then, if π : C → modB is the projection functor, we have that π(Σ) is a
local slice in modB in the sense of [ABS2, 11]. On the other hand, if Σ′ is
a local slice in modB, then π−1(Σ′) is in add(Σ ⊕ τT ), where Σ is a local
slice in C. It is not hard to see that we have a bijection between the local
slices in C \ add(τT ) and the set of local slices in modB. We will identify
the two.

For the rest of this section, we assume the quiver Q to be Dynkin. In
this case, we can read off the morphism and extension spaces of the inde-
composable objects from the AR-quiver ΓC . Furthermore, we can explicitly
calculate the distribution of T in ΓC by using the methods developed in
[BOW]. Hence we also assume this distribution to be known. It is therefore
easier to illustrate the theory in this case. Later in § 6, we will explain how
to generalize the theory for the infinite case.

We now recall some results from [ABS2] which will be useful for our
purposes.

Theorem 3.2. [ABS2, 19] Let C be a subalgebra of the cluster-tilted algebra
B. The algebra C is maximal tilted if and only if there exists a local slice Σ
in modB such that C = B/AnnB Σ.

Corollary 3.3. [ABS2, 20] Let C be a tilted algebra and B its relation
extension. Then any complete slice in modC embeds as a local slice in
modB, and any local slice in modB arises this way.
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Given a local slice Σ in modB, the ideal AnnB Σ is generated by a subset
S of the set of arrows of the quiver of B ([ABS2, 21]). In fact, AnnB Σ '
Ext2

C(DC,C), where C = B/AnnB Σ. We call this admissible set S a tilted
admissible set. Observe that the arrows that belong to S are obtained from
the oriented cycles of QB. From [BR, 3.7] we know that each of these arrows
belongs to exactly one full oriented cycle of QB. It follows from Theorem 3.2
that we have a bijection between the tilted admissible subsets of the set of
arrows of QB and the maximal tilted subalgebras of B.

We want to give a procedure for finding these tilted admissible subsets.

Definition 3.4. Let X,Y be objects in a triangulated category A. Define
I(X,Y ) to be the set of all the indecomposable objects Z in A such that
there exist morphisms X → Z → Y with non-zero composition.

These sets of objects will be very useful in order to compute the generating
arrows of AnnB Σ, where Σ is local slice, by using the following theorem.

Theorem 3.5. Let b→ a be an arrow of QB, the quiver of B = EndC(T )op,
where T is a cluster-tilting object in C. Let Σ be a local slice in modB and
S the tilted admissible set generating AnnB Σ. Then we have the following:

(a) The set τI(Ta, Tb) \ {τTa, τTb} 6= ∅ if and only if b → a lies on an
oriented cycle.

(b) The arrow b→ a belongs to S if and only if τI(Ta, Tb) ∩ Σ 6= ∅.

Proof.

(a) First assume that b → a lies on an oriented cycle. It is enough to
show that I(Ta, Tb) \ {Ta, Tb} 6= ∅. Recall that the relations of B
are given by a potential ([BIRSm, 5.11],[K, 6.12]).Thus the arrow
b → a belongs to at least one term in the potential. Choose from
one of these terms, a path ρ from a to b. Thus we have an associated
oriented cycle and we proceed by induction on the length l of the
cycle. For l = 3 we have the following diagrams in the quiver and in
C:

b a

c

Tb Ta

Tc

Now mutate at c to obtain:

b a

c∗

Tb Ta

Tc∗

Thus Tc∗ is in I(Ta, Tb) \ {Ta, Tb} since the composition Ta → Tc∗ →
Tb is non-zero. Now for a cycle b→ a→ c1 → · · · → cm → b, mutate
at cm to shorten the length of the oriented cycle by one and just



6 BERTANI-ØKLAND, OPPERMANN, AND WRÅLSEN

restrict to the new oriented cycle as in the following diagram

b a

c1

c2cm−1

cm

b a

c1

c2cm−1

Repeat the procedure until you get to the first case.
Now assume that there exists 0 6= τX ∈ τI(Ta, Tb) \ {τTa, τTb}.

Resolve X in terms of T to obtain a triangle X → T0 → T1 → X[1]
where T0, T1 ∈ addT . Let f :Ta → Tb be the morphism correspond-
ing to the arrow b → a. The claim follows if we show that there
exists a minimal relation involving f . Using the triangle above, and
the fact that f factors through X, we have the following commutative
diagram

Ta

Tb ⊕ T ′0 Tc ⊕ T ′1X

(
f
g

)
(
p q
r s

)

where p 6= 0, T0 = Tb ⊕ T ′0 and T1 = Tc ⊕ T ′1, for an indecomposable
summand Tc of T . Since the composition ( p qr s )

(
f
g

)
is zero, we obtain

that pf+qg = 0. Note that there is no term of the form pf appearing
in qg, because the approximations of the triangle are minimal. Hence
we have a minimal relation pf + qg = 0.

(b) Assume b→ a belongs to S. Since S generates AnnB Σ this is equiv-
alent to b→ a ∈ AnnB Σ. We call the map Ta → Tb corresponding to
this arrow f . Then b→ a ∈ AnnB Σ if and only if HomC(f,Σ) = 0.

By (the opposite version of) Theorem 2.1 applied to the cluster-
tilting object Σ we have an equivalence

HomC(−,Σ): C/(τ−Σ)→ mod EndC(Σ).

In particular HomC(f,Σ) = 0 if and only if f factors through some
object in τ−Σ, say through X. Then clearly τX ∈ τI(Ta, Tb) ∩ Σ,
and hence the set is non-empty. If τI(Ta, Tb) ∩ Σ 6= ∅ the map τf
factors through Σ, and thus f factors through τ−Σ.

�

We now give an example illustrating that, in order to produce tilted al-
gebras, the arrows belonging to a tilted admissible set can not be chosen at
random.

Example 3.6. Let B be the cluster-tilted algebra obtained from D5 shown
below, and C the subalgebra of B obtained by removing S = {1→ 2, 3→ 4}.

1

2

3

4

5

B :

1

2

3

4

5

C :
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Here C is not tilted. In fact gl. dimC = 3, and C is iterated tilted of type
A5.

In the light of the previous example, we have the following definitions.
Let b → a, c → d be in S where S is an admissible set in QB. We say that
b→ a and c→ d are compatible if there exists a local slice Σ in C \ add(τT )
such that Σ ∩ τI(Ta, Tb) and Σ ∩ τI(Tc, Td) are both non-empty. Otherwise
we say that the arrows are not compatible. The span of b→ a is defined to
be the set of indecomposable modules X in C such that there exists a local
slice Σ in C \ add(τT ), with X ∈ Σ and Σ∩ τI(Ta, Tb) 6= ∅. We denote it by
span(b → a). Denote by span(S) = ∩b→a in S span(b → a). Thus we have
the following.

Proposition 3.7. Let B = EndC(T )op be a cluster-tilted algebra. An ad-
missible set S is tilted if and only if there exists a local slice Σ ∈ C \add(τT )
contained in span(S).

Proof. Assume that S is tilted. Then there exists a local slice Σ such that
AnnB Σ is generated by S. Let b→ a be in S. By Theorem 3.5 (b) we have
that Σ ∩ τI(Ta, Tb) 6= ∅, and thus Σ ⊂ span(b → a). Since this is true for
every arrow of S, we conclude that Σ ⊂ span(S).

Assume now that Σ is a local slice in C\add(τT ) contained in span(S). For
every b→ a in S we have that Σ ⊂ span(b→ a) and thus Σ∩τI(Ta, Tb) 6= ∅,
by the definition of span(b → a). Let S′ be the generating set of AnnB Σ.
Then by Theorem 3.5 (b) we have that S ⊂ S′, but since both sets are
admissible, they must be equal. Thus S is tilted. �

For C = CQ and Q Dynkin, the Hom-spaces can easily be read off from
the AR-quiver, and it is not difficult to compute the sets I(X,Y ) for X,Y
objects in C and the span of an admissible set S.

Example 3.8. Let B be the cluster-tilted algebra of type D5 from Ex-
ample 3.6 and consider the admissible sets S1 = {1 → 2, 3 → 4} and
S2 = {2 → 4, 3 → 4}. Let us check if they are tilted. We do the calcu-
lations in the AR-quiver of the cluster category of D5.

τT5

τT4

X

T5

τT2

τT3

T4

Z1

T2

T3

Z2

τT1 T1 τT5

In the figure above, τI(T4, T3) = {X} and τI(T2, T1) = {Z1, Z2}. The set
span(3 → 4) is shown in light grey, span(1 → 2) in darker grey and the set
span(3→ 4)∩span(1→ 2) in dark grey. It is clear that there is no local slice
in the intersection and hence the admissible set S1 is not tilted. Therefore
the arrows 3 → 4 and 1 → 2 are not compatible. We already knew that
S1 is not tilted, since this admissible set produces the subalgebra C of B in
Example 3.6.
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Next we consider S2.

τT5

τT4

X

T5

τT2

τT3

T4

T2

T3

τT1 T1 τT5

Here we have that τI(T4, T3) = τI(T4, T2) = {X}. The set span(3 → 4) =
span(2 → 4) is shown in dark grey. There are two local slices contained
in span(S2) and thus S2 is tilted and the arrows 3 → 4 and 2 → 4 are
compatible. Observe that both local slices share the same annihilator.

As the example above shows, there may be many local slices whose an-
nihilator is generated by the same tilted admissible set S. We will now
define an equivalence relation on the set of local slices such that two local
slices belong to the same equivalence class if and only if they share the same
annihilator.

Definition 3.9. Let Σ be a local slice in modB and X an indecomposable
object in Σ. Define τ+

XΣ = (Σ \ X) ∪ τX. Similarly, we define τ−XΣ =
(Σ \X) ∪ τ−X.

It is not difficult to see that τ+
XΣ is a local slice in modB if and only if

τX is defined and X is a sink when restricted to Σ. Equivalently, τ+
XΣ is a

local slice in C \ add(τT ) if and only if τX 6∈ add(τT ) and X is a sink when
restricted to Σ. There is a dual remark for τ−XΣ.

Definition 3.10. Let Σ and Σ′ be two local slices in modB. We write
Σ ∼ Σ′ if there exists a sequence of indecomposable modules X1, . . . , Xm

such that Σi = τ±XiΣi−1 is a local slice, Σ0 = Σ, Σm = Σ′ and Xi ∈ Σi−1 for
1 ≤ i ≤ m. In this case, we say that Σ is homotopic to Σ′.

The symbol ± means that one can choose either + or − in the sequence.
Note that two local slices are homotopic if one can move from one to the

other without passing through the “holes” of modB, i.e. the holes made by
τT in the equivalence C/ add(τT ) ' modB.

We introduce the following notation for AR-triangles. If X is an inde-
composable object in C, we have two AR-triangles associated to X:

X → ϑ−X → τ−X → and τX → ϑX → X →
where ϑ−X and ϑX just denote the middle term of the corresponding AR-
triangle.

We will now define an equivalence relation on the set of indecomposable
summands of the cluster-tilting object T .

Definition 3.11. Let Ta, Tb be two non-isomorphic indecomposable sum-
mands of T . We say that Ta ≡1 Tb if there exists an AR-triangle τX →
ϑX → X → such that Ta, Tb are direct summands of τX ⊕ ϑX ⊕X. Take
≡ to be the minimal equivalence relation containing ≡1. We call the equiv-
alence class [Ta] a cell and τ [Ta] a trench. Then we have a partition of the
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summands of T and we write T = ⊕kT̃k, where each T̃k is the sum of all the
indecomposable summands belonging to the same cell. We call this the cell
decomposition of T .

Similarly, B and C inherit a cell decomposition, where C is any maximal
tilted subalgebra of the cluster-tilted algebra B associated to T .

At the level of quivers, we also inherit a cell decomposition. The cells of
QB are the full subquivers Q

EndC(T̃k)op for the corresponding k.
Let Σ be a local slice in C \ add(τT ). A cell [Ta] is called a relative source

with respect to Σ if whenever there is a non-zero morphism from the cell T̃j
to T̃k for j 6= k we have that Σ ∩ τI(T̃j , T̃k) 6= ∅. Then we also call the cells
B̃k and C̃k a relative source.

Example 3.12. Let B be the cluster-tilted algebra of type D5 from Exam-
ple 3.6. Then a cluster-tilting object T = ⊕5

i=1Ti such that B = EndC(T )op

is given in the AR-quiver of the cluster category of D5 below.

τT5

τT4

T5

τT2

τT3

T4

T2

T3

τT1 T1 τT5

Here the dashed lines are identified. We then have three cells, given
by [T1] = T1, [T2] = T2 ⊕ T3 and [T4] = T4 ⊕ T5. The three trenches are
Xi = τ [Ti] for i = 1, 2, 4.

Let Σ be the local slice given by the grey area. Then we have that [T2]
is a relative source with respect to Σ and [T4] is a relative sink with respect
to Σ. The maximal tilted subalgebra C associated to Σ is given by

1

2

3

4

5

whose cell decomposition is as indicated by the dots in the figure above.

We now give a criterion for when two local slices give rise to the same
maximal tilted subalgebra.

Theorem 3.13. Let Σ and Σ′ be two local slices in modB. Then AnnB Σ =
AnnB Σ′ if and only if Σ ∼ Σ′.

Proof. Assume that AnnB Σ = AnnB Σ′ and that Σ 6∼ Σ′. Two such lo-
cal slices cut the cluster category into at least two separate parts, each
containing part of the trenches. More precisely, there exist trenches τ [Ta]
and τ [Tb] such that any map between them factors through Σ ⊕ Σ′. Let
C = B/AnnB Σ be the tilted algebra corresponding to the local slice Σ.
Since C is connected, we may choose Ta and Tb as above in such a way that
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there are non-zero homomorphisms between the corresponding indecompos-
able projective modules of C. By Theorem 3.5 (b) we have τI(Ta, Tb)∩Σ = ∅.
Then, by our choice of [Ta] and [Tb], the map τTa → τTb has to factor
through Σ′. Hence we have found an element of AnnB Σ′ \AnnB Σ, contra-
dicting the assumption.

Now assume that Σ ∼ Σ′. Then we can move from one to the other
without passing through any trench. This means that they must have the
same trenches to the left and right, and thus kill the same arrows from QB.
Hence AnnB Σ = AnnB Σ′. �

This theorem shows that two local slices produce the same maximal tilted
subalgebra of B if and only if both local slices belong to the same homotopy
class. Hence we have proved the following.

Corollary 3.14. There is a bijection between the set of homotopy classes
of local slices in modB and the set of maximal tilted subalgebras of B.

We now want to be able to move from one equivalence class to the other
by “jumping” trenches. We will work in C since in that category the trenches
are physically there. All our local slices will not intersect add(τT ) and thus
will naturally descend to modB.

Construction 3.15. Let X = τ [Ta] be a trench in C. Define

LX = ind(τX ⊕ ϑX ⊕ ϑ−ϑX) \ ind(addX)

RX = ind(τ−X ⊕ ϑ−X ⊕ ϑϑ−X) \ ind(addX).

We claim that there exist local slices Σ,Σ′ such that the only trench
between them is X. To see this, use LX and complete it to a local slice (one
can, for instance, use the same algorithm as in the proof of [ABS2, 23]).
Now use the same completion with RX . This works because RX and LX
intersect at their end-points and their union surrounds X.

Then we can define the following operations on local slices. For a local
slice Σ with LX ⊂ Σ and a local slice Σ′ with RX ⊂ Σ′ we set

J−XΣ =(Σ \ LX) ∪RX
J+
XΣ′ =(Σ′ \RX) ∪ LX .

Note that J+
XJ
−
XΣ = Σ and J−XJ

+
XΣ′ = Σ′. Furthermore, if it is possible

to apply J−X or J+
X to two equivalent local slices, then the images will be

equivalent again.
One can always choose a representative of each equivalence class of local

slices, such that one can apply J±.
Notice that [Ta] is a relative source with respect to Σ and a relative sink

with respect to Σ′. Thus J− transforms relative sources into relative sinks
and J+ does the opposite. It is clear that with this procedure we run through
all the equivalence classes of local slices, and thus through all the maximal
tilted subalgebras of B. We now illustrate with an example.
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Example 3.16. Let X = τ [T2] = {τT2, τT3} be the trench as in Exam-
ple 3.12.

τT5

L1

L2

τT4

L3

T5

τT2

τT3

L4 = R4

R3

R1

R2

τT1 T1 τT5

Here LX = ⊕4
i=1Li and RX = ⊕4

i=1Ri. Let Σ be the completion of LX to
a local slice shown in light grey and Σ′ the completion of RX to a local
slice shown in dark grey. Note that the completions are not unique. We
have that J−XΣ = Σ′ and J+

XΣ′ = Σ. The trench X is a relative source with
respect to Σ and a relative sink with respect to Σ′. Let C = B/AnnB Σ and
C ′ = B/AnnB Σ′.

1

2

3

4

5

C :

1

2

3

4

5

C ′ :

Observe that these operations amount to exchanging the relations ending at
the cell corresponding to the trench we jumped with arrows coming out of
the cell, and the arrows coming in with relations.

4. Generalized 2-APR tilting

In this section we recall and generalize 2-APR tilting, which was originally
introduced in [IO]. We then show that “jumping trenches”, as introduced
in Section 3, is a special case of this generalized 2-APR tilting. Finally we
give an explicit description of the quiver and relations of the 2-APR tilted
algebra in terms of the original algebra.

APR tilting has been introduced by Auslander, Platzeck and Reiten in
[APR]:

Assume C is a basic algebra, and C = C0 ⊕ CR where C0 is a simple
projective C-module. Then T = τ−C0 ⊕ CR is a tilting module. If more-
over the injective dimension idC0 = 1, then the quiver of EndC(T )op is
obtained from the quiver of C by reversing all arrows ending in the vertex
corresponding to C0.

The procedure of APR tilting was generalized in [IO]. Here we are mostly
interested in what is called 2-APR tilting in that paper. Instead of replacing
C0 by τ−C0 it is replaced by the complex τ−C0[1] = FC0 (called τ−2 C0 in
that paper). Then, provided certain conditions are satisfied, the quiver with
relations of the algebra EndC(τ−C0[1]⊕CR)op can be read off directly from
the quiver with relations of the algebra C (see Proposition 4.4 below).

Here we generalize that construction in two ways:
First, we use the replacement FC0 (constructed in the derived category)

instead of the construction of τ−2 in the module category in [IO], and allow
the result to be a proper complex.
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Second, we do not require C0 to be simple. In fact we will wish to apply
the procedure to all indecomposable summands in one cell at once.

Definition 4.1. Let C be an algebra of global dimension two. Assume
C = C0 ⊕ CR with HomC(CR, C0) = 0 and Ext1

C(νCR, C0) = 0. Then
we call T := FC0 ⊕ CR the 2-APR tilting complex associated to C0, and
C ′ = EndDb(modC)(T )op the generalized 2-APR tilt of C at C0.

For the application in this paper C will be tilted, but it is not necessary
to assume it to be tilted at this moment.

This definition is justified by the following fact:

Lemma 4.2. In the situation of Definition 4.1 the complex T is a tilting
complex in Db(modC).

Proof. We start by showing

(1) HomC(C0, νCR) = 0 = HomC(νCR, C0).

Since HomC(CR, C0) = 0 there are no arrows in the quiver of C from vertices
corresponding to C0 to vertices corresponding to CR. Hence all composition
factors of C0 are in add(C0/ radC0), and all composition factors of νCR are
in add(CR/ radCR). In particular C0 and νCR have no common composition
factors. This implies that (1) holds.

Next we show that T generates the derived category. Let X ∈ Db(modC)
such that HomDb(modC)(T,X[i]) = 0 for all i ∈ Z. Then in particular
HomDb(modC)(CR, X[i]) = 0 for all i ∈ Z, and hence all composition factors
of all homologies of X are in add(C0/ radC0). Therefore X is isomorphic to
a complex with terms in addC0. On the other hand

HomDb(modC)(C0, νX[i]) = HomDb(modC)(FC0, X[i+ 2]) = 0∀i ∈ Z.
Hence νX is isomorphic to a complex with terms in add νCR. Now

HomDb(modC)(X,X) = DHomDb(modC)(X, νX) = 0,

and hence X = 0. So T generates Db(modC).
It remains to see that HomDb(modC)(T, T [i]) = 0 for all i 6= 0. Since C0

and CR are projective modules we have

HomDb(modC)(C0, C0[i]) = 0 = HomDb(modC)(CR, CR[i]) = 0 ∀i 6= 0,

and since F is an autoequivalence of Db(modC) also

HomDb(modC)(FC0, FC0[i]) = 0 ∀i 6= 0.

Next we see that

HomDb(modC)(FC0, CR[i]) = HomDb(modC)(C0, νCR[i− 2])

= DHomDb(modC)(CR[i− 2], C0)
= 0 ∀i.

Finally we have

HomDb(modC)(CR, FC0[i]) = HomDb(modC)(νCR, C0[i+ 2]).

Since gl.dimC = 2, this vanishes for all i 6∈ {−2,−1, 0}. For i = −1 it
vanishes by assumption, and for i = −2 we have HomDb(modC)(νCR, C0) = 0
by (1). �
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Remark. Note that

HomDb(modC)(CR, FC0) = Ext2
C(νCR, C0).

The following lemma shows that jumping trenches (as introduced in Con-
struction 3.15), or more generally passing from one local slice to another,
are special cases of 2-APR tilting.

Lemma 4.3. Let C be an iterated tilted algebra with gl. dimC = 2. We
decompose C = ⊕aCa with Ca indecomposable. Let Σ ⊆ Db(modC) be a
complete slice which does not contain any of the Ca. Then for

C0 =
⊕

{a|∃ path
Ca Σ}

Ca and CR =
⊕

{a|∃ path
Σ Ca}

Ca

the assumptions of Definition 4.1 are satisfied. That is, we have HomC(CR, C0) =
0 = Ext1

C(νCR, C0).

Proof. The first claim holds by construction, the second follows immediately
from the fact that νCR = τCR[1]. �

Assume now that C is tilted. Then C is obtained from the corresponding
cluster-tilted algebra B = C n Ext2

C(DC,C) by factoring out the arrows in
some admissible set S.

The next proposition explicitly gives us the quiver of any generalized 2-
APR tilt of C.

Proposition 4.4. Let C = B/〈S〉 be tilted, where B is the corresponding
cluster-tilted algebra, and S is an admissible set. Assume C0 ≤⊕ C admits
a 2-APR tilting complex. Then EndDb(modC)(FC0⊕CR)op is isomorphic to
C ′ = B/〈S′〉, where

S′ = S \ {all arrows from C0 to CR} ∪ {all arrows from CR to C0}.
(Here “all arrows” refers to all arrows in the quiver of B.)

Proof. We denote the indecomposable projective modules over C and C ′

with simple top corresponding to vertex a by Ca and C ′a, respectively. More-
over we write

C̃a =
{
FCa if Ca ∈ addC0

Ca if Ca ∈ addCR.

Then we have to show that HomDb(modC)(C̃a, C̃b) = HomC′(C ′a, C
′
b) for any

a and b.
By construction (see the proof of 4.2) the morphisms inside C0 and the

morphisms inside CR are not affected by the tilt (and neither by our change
of admissible set), so the claim holds if either both or none of Ca and Cb are in
addC0. Moreover we have seen that HomDb(modC)(FC0, CR) = 0, and since
all arrows from CR to C0 are contained in S′ we have HomC′(C ′a, C

′
b) = 0 if

Ca ∈ addC0 and Cb ∈ addCR. Finally for Ca ∈ addCR and Cb ∈ addC0

we have

HomDb(modC)(C̃a, C̃b) = Ext2(νCa, Cb)

= HomB(Ca, Cb)

= HomC′(C ′a, C
′
b)
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as claimed. �

Remark. Proposition 4.4 holds more generally for any finite dimensional
algebra C of global dimension 2. In that case one uses B = TC Ext2(DC,C),
the tensor algebra of Ext2(DC,C) over C. This algebra is the endomorphism
ring of the image of B in the cluster category of B, as defined by Amiot (see
[A1, A2]).

Example 4.5. Let us now look at what the construction of Lemma 4.3 and
Proposition 4.4 does in the setup of the Example 3.12. Recall that C was
given by the quiver with relations

1

2

3

4

5

and the Auslander-Reiten quiver of its derived category looks as follows
(continuing infinitely in both directions):

C2

C3

C1 C5

C4

FC3

FC2

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

We choose a complete slice not containing any of the Ca as indicated by
the grey area above. Then, in the construction of Lemma 4.3 we obtain
C0 = C2 ⊕ C3 and CR = C1 ⊕ C4 ⊕ C5. Now the quiver with relations of
EndDb(modC)(FC0 ⊕ CR)op is

1

2

3

4

5

This follows from Proposition 4.4. It can also be verified by looking directly
at the Auslander-Reiten quiver above.

5. The algorithm

In this section we put together the techniques developed in Sections 3 and
4 to obtain an algorithm that, given a cluster-tilted algebra of finite type B,
produces all maximal tilted subalgebras.

For the rest of the section let B be the input to our algorithm, that is
some fixed cluster-tilted algebra of Dynkin type.

Step 1. Determine the distribution of the indecomposable direct summands
of a cluster-tilting object T in a cluster category C with EndC(T )op = B.

Remark. We refer the reader to [BOW] for a technique to find the distribu-
tion of a cluster-tilting object in the AR-quiver of the cluster category.
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Step 2. Determine which indecomposable direct summands of T lie in the
same cell.

This can be done by directly applying the definition of the equivalence
relation ≡ (see Definition 3.11).

Step 3. Choose a local slice Σ such that τ−Σ ∩ addT = 0.

Step 4. Determine a tilted admissible set S such that B/AnnB Σ = B/〈S〉.
Call this tilted algebra C.

We can read off the tilted admissible set S from the AR-quiver of C
as follows: S consists of arrows b → a in the quiver QB of B, such that
τI(Ta, Tb) ∩ Σ 6= ∅ (see Theorem 3.5 (b)).

Step 5. Move Σ as far to the right as possible within its homotopy class.

By Theorem 3.13 this step does not change the tilted algebra C, and
hence neither the tilted admissible set S.

Step 6. For any cell T̃ which is a relative source with respect to Σ and such
that T̃ ∈ τ−2Σ, jump the trench τ T̃ as in Construction 3.15. We call the
local slice obtained in this way Σ

T̃
.

By Proposition 4.4 this amounts to the following:

• Removing all arrows i→ j, where Ti is in the cell T̃ and Tj in some
other cell, from the set S.
• Adding all arrows i → j in QB, where Tj is in the cell T̃ and Ti in

some other cell, to the set S.

Let S
T̃

be the new tilted admissible set obtained in this way. Then C
T̃

=
B/〈S

T̃
〉 = B/AnnB Σ

T̃
.

Step 7. Apply the algorithm starting in Step 5 to the new tilted admissible
sets and tilted algebras until no new maximal tilted subalgebras are obtained
any more.

Remark. We could also apply the procedure in the opposite direction (that
is, move the local slice to the left).

Example 5.1. Let B be the cluster-tilted algebra with the following quiver.

5

4

3

2

1

B :
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Step 1. Observe that the summands of the cluster-tilting object T having
endomorphism ring B are distributed in the cluster category of D5 as follows:

τT5

τT4

T5

τT2

τT3

T4

T2

T3

τT1 T1 τT5

Σ1

Step 2. We see from the diagram above that the cells are T1, T2 ⊕ T3, and
T4 ⊕ T5, and hence the trenches are τT1, τT2 ⊕ τT3, and τT4 ⊕ τT5.

Step 3. We choose our first local slice Σ1 as indicated in the figure above.

Step 4. Since the only set which has non-empty intersection with Σ1 is
τI(T1, T4) (this is the set indicated by the squares in the figure above),
the corresponding tilted admissible set is {4 → 1} and thus we obtain the
maximal tilted subalgebra C1, illustrated in the figure below.

5

4

3

2

1

B :

Step 5. The local slice Σ1 is already as far to the right as possible.

Step 6. We note that the only relative source with respect to Σ1 is T4⊕T5.
Jumping the corresponding trench we obtain the new tilted admissible set
{2→ 4, 3→ 4}.

Step 7. See Figure 5.1 for all maximal tilted algebras obtained by repeatedly
applying the last three steps.

The following example shows that in Step 6 we have to follow the local
slice. Some relative sources cannot be jumped.

Example 5.2. Let C1 be the tilted algebra of type A5 shown below. The
cell corresponding to vertex 3 is a relative source. If we apply the 2-APR
tilt at the indecomposable projective C1-module at vertex 3 we obtain the
algebra C2 which is iterated tilted of type A5 but not tilted.

5

4

3

2

1

C1 :
mutate at

3
5

4

3

2

1

C2
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τT5

τT4

τT2

τT3

τT1 τT5

Σ1

a)
C1 :

5

4

3

2

1

τT5

τT4

τT2

τT3

τT1 τT5

Σ2

b)
C2 :

5

4

3

2

1

τT5

τT4

τT2

τT3

τT1 τT5

Σ3 Σ′3

c)
C3 :

5

4

3

2

1

τT5

τT4

τT2

τT3

τT1 τT5

Σ4

d)
C4 :

5

4

3

2

1

Figure 5.1. In this figure, the light grey areas denote the
equivalence class of the local slices shown in darker grey. To
the right we show the corresponding maximal tilted subal-
gebras. Observe that Σ2 = J−τT4⊕τT5

Σ1, Σ3 = J−τT2⊕τT3
Σ2 is

homotopic to Σ′3 and Σ4 = J−τT1
Σ′3 is homotopic to Σ1. Fur-

thermore, [Σ1], [Σ2] and [Σ3] are all the equivalence classes
of local slices in C \ add(τT ) (or equivalently in modB).

6. Representation infinite cluster-tilted algebras

In this section, we explain how the theory developed in Sections 3 to 5 can
be generalized to find all the maximal tilted subalgebras of a cluster-tilted
algebra B of infinite type. We assume that we know the distribution of the
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direct summands of the cluster-tilting object in the AR-quiver of the cluster
category.

The main task is to generalize the results of Section 3 to this more general
setup.

First, observe that Theorem 3.5 holds for an arbitrary cluster tilted alge-
bra. In this case, we might have multiple arrows between a pair of vertices.
Let α : b → a be an arrow in an admissible tilted set S, and assume that
there is another arrow β from b to a. We claim that β belongs to S. To
see this, recall that by [Hu, 2.4], only one of the spaces ExtiC(Sa, Sb) can
be non-zero for i = 0, 1, 2, where Sa, Sb are the simple C-modules at the
vertices a and b for the tilted algebra C = B/〈S〉. Note that the arrow α in
S corresponds to a minimal relation in Ext2

C(Sa, Sb) 6= 0. Therefore β also
corresponds to a minimal relation in the same space, and thus β belongs to
S.

Second, notice that Proposition 3.7 relies only on Theorem 3.5 (b), and
thus holds in this generality.

We will generalize Definitions 3.10 and 3.11. This is done for two reasons:
First, to deal with the fact that, in general, there is a finite number of
indecomposable objects lying in the connecting component of modB that
does not belong to any local slice (see [ABS2, 22]). Second, to deal with the
possible regular summands of the cluster-tilting object.

The results of Section 4 have been proven without assuming that the al-
gebra is representation finite. Hence, with the alterations mentioned above,
the algorithm works as presented in Section 5 in this more general setup.

The change to the definition of homotopy of local slices is fairly straight
forward.

Definition 6.1. Let T be a cluster-tilting object in C, and B = EndC(T )op.
Let Σ and Σ′ be two local slices in modB. We say that Σ and Σ′ are
homotopic, if Σ ∼ Σ′ in the sense of Definition 3.10, or if C is infinite, T
has no regular direct summands, and all direct summands of τT in the
connecting component lie either at the same side of both Σ and Σ′ or in
between them.

Remark. Note that the sufficiency part of Theorem 3.13 is also valid for this
definition of “homotopic”. However, for the necessity part it remains to deal
with the case when the cluster-tilting object has nonzero regular summands.
Using the same notation as in Theorem 3.13, assume T has nonzero regular
summands and pick two local slices Σ ∼ Σ′ in modB. The critical case is
when either all summands of τT lie at the same side of both local slices or in
between them. In any case, they both kill the same arrows from QB. Thus
the theorem remains valid under this setting.

Now we change the definition of the equivalence relation ≡, and hence of
cells and trenches, to fit this more general setup.

Definition 6.2. Let H be a hereditary algebra and T ∈ modH a tilting
module. For T ′ and T ′′ indecomposable summands of T we write T ′ τ→ T ′′

if at least one of

HomH(T ′, T ′′) 6= 0 ∨ HomH(τT ′, T ′′) 6= 0 ∨ HomH(T ′, τ−T ′′) 6= 0
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holds. We denote by τ
 the transitive hull of this relation. We write T ′ τ= T ′′

if T ′ and T ′′ are both regular, or T ′ τ
 T ′′

τ
 T ′. This is an equivalence

relation. Note that τ
 induces a partial order on the equivalence classes.

We use similar constructions in D = Db(modH).
For T ∈ C cluster-tilting, and Σ a local slice with Σ ∩ add τT = 0, we

use the corresponding tilting module DHomC(T,Σ) over the hereditary al-
gebra EndC(Σ)op to obtain similar notions. For T ′ and T ′′ indecomposable
summands of T we write T ′ τ→Σ T ′′ if DHomC(T ′,Σ) τ→ DHomC(T ′′,Σ).
Similarly we obtain an equivalence relation τ=Σ.

Remarks.
(a) It appears as if our definition of the equivalence relation τ=Σ in C

depends on the choice of Σ. We will see that this is not the case (see
Corollary 6.9).

(b) Note that the set of complete slices in modH forms a lattice (i.e. is
partially ordered and has suprema and infima – this is induced by
comparing τ -orbit-wise).

Next we prove some technical lemmas which will be useful for the rest of
the section.

Lemma 6.3. Let T1 ⊕ T2 be a tilting module over a hereditary algebra H,
and Σ the smallest complete slice containing T1. Then addT2 ∩ τΣ = 0.

Proof. Assume that 0 6= T ′ ∈ addT2 ∩ τΣ. Since Σ is the smallest complete
slice containing T1, there is a non-zero morphism T ′ → τT1. This means
that 0 6= HomH(T ′, τT1) = DExt1

H(T1, T
′), contradicting the fact that T is

a tilting module. �

Lemma 6.4. Let T be a tilting module over a hereditary algebra H, T ′ ∈
addT indecomposable non-regular. Then the equivalence class [T ′] τ

=
is con-

tained in a complete slice.

Proof. Since T ′ is non-regular, it is contained in some complete slice. Let
S be maximal such that {T ′} ⊆ S ⊆ [T ′] τ

=
, with S contained in a complete

slice. Assume T ′′ ∈ [T ′] τ
=
\ S. By Lemma 6.3 and the definition of τ

 , the
object T ′′ cannot lie properly to the left of the minimal slice containing S,
and dually it cannot lie to the right of the maximal slice containing S. Hence
there is a complete slice containing S and T ′′. �

The following proposition follows immediately from Lemma 6.4, looking
at the projection D → C.
Proposition 6.5. Let T be cluster-tilting in C, and Σ some local slice with
Σ∩add τT = 0. Let T ′ ∈ addT be indecomposable non-regular. Then [T ′] τ

=Σ

is contained in some local slice.

The next corollary shows that summands of a cluster-tilting object, which
are equivalent with respect to τ=Σ, can be lifted to the derived category in
such a way that they remain equivalent.

Corollary 6.6. Let T be cluster-tilting in C, and Σ some local slice with
Σ∩add τT = 0. Let T0 ∈ addT be indecomposable non-regular, and [T0] τ

=Σ
=
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{T0, . . . , Tr}. Then we can find preimages {TD0 , . . . , TDr } in D which lie in
one complete slice.

In particular

HomD(TDi , T
D
j ) = HomC(Ti, Tj),

HomD(τTDi , T
D
j ) = HomC(τTi, Tj), and

HomD(TDi , τ
−TDj ) = HomC(Ti, τ−Tj),

and TDi
τ
 TDj for any i, j.

In order to obtain all maximal tilted subalgebras, we must make sure that
there is no slice cutting through our cells.

Lemma 6.7. Let S be a subset of some complete slice in D, such that
T ′

τ
 T ′′ for any T ′, T ′′ ∈ S. Let Σ be a complete slice with Σ ∩ τS = 0.

Then either all of τS lie to the left or all of τS lie to the right of Σ.

Proof. We may assume that S has some element which lies to the right of
τ−Σ. By definition of τ

 and the fact that S ∩ τ−Σ = 0, then all elements
of S lie to the right of τ−Σ. �

Next we show that going down from the derived category to the cluster
category is compatible with our equivalences.

Lemma 6.8. Let S be a subset of some complete slice in D, such that
T ′

τ
 T ′′ for any T ′, T ′′ ∈ S. Let Σ be a local slice in C with Σ∩ τpr(S) = 0

(here pr: D → C is the projection functor). Then pr(T ′) τ
 Σ pr(T ′′) for any

T ′, T ′′ ∈ S.

Proof. Assume T ′
τ→ T ′′, but pr(T ′) 6 τ→Σ pr(T ′′). If HomD(T ′, T ′′) 6= 0,

then by Lemma 6.7 we have HomC/(τ−Σ)(pr(T ′), pr(T ′′)) 6= 0, contradicting
our assumption. Hence we may assume HomD(τT ′, T ′′) 6= 0, and any map
τT ′ → T ′′ factors through τ−Σ′ for some complete slice Σ′ with pr(Σ′) = Σ.
By Lemma 6.7 all of S lies to the right of τ−Σ′, and τT ′ ∈ τ−Σ′. Similarly
HomC/(τ−Σ)(pr(T ′),pr(τ−T ′′)) = 0 implies τ−T ′′ ∈ τ−FΣ′. But then T ′′ ∈
τ−Σ′[1], and hence HomD(τT ′, T ′′) = 0, contradicting our assumption. �

We now have all ingredients needed to prove that the definition of the
equivalence relation τ=Σ is independent of the chosen local slice Σ.

Corollary 6.9. Let T be cluster-tilting in C. Then τ=Σ is independent of
the choice of local slice Σ with Σ ∩ add τT = 0.

We will therefore from now on only write τ=.

Proof. We have seen in Corollary 6.6 that summands equivalent with respect
to one slice can be lifted to equivalent objects in the derived category. Then
by Lemma 6.8 they are also equivalent with respect to any other local slice.

�

Now one makes sure that maps inside the cell are not affected by the
choice of local slice.
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Proposition 6.10. Let T be cluster-tilting in C. For any local slice Σ with
Σ ∩ add τT = 0 and any T ′ τ= T ′′ we have

HomH(T̃ ′, T̃ ′′) =

 HomC(T ′, T ′′) if T ′ non-regular
HomC(T ′,T ′′)(

maps factoring through
non-regular objects

) if T ′ regular,

where H = EndC(Σ)op, T̃ ′ = DHomC(T ′,Σ), and T̃ ′′ = DHomC(T ′′,Σ).
In particular it is independent of Σ.

Proof. Note that

HomH(T̃ ′, T̃ ′′) =
HomC(T ′, T ′′)(

maps factoring
through τ−Σ

) .
The claim for T ′ and T ′′ regular follows immediately, since any map between
them factors through the non-regular component if and only if it factors
through any local slice.

For T ′ and T ′′ non-regular the claim follows from Corollary 6.6 and
Lemma 6.7. �

Let Q be a tree-quiver (that is a quiver without cycles, but possibly with
multiple edges) and C the cluster category of the path algebra KQ. For any
cluster-tilting object T in C, we say that EndC(T )op is a cluster-tilted algebra
of tree-type ([ABS2, §4]). The next proposition assures that Definition 3.11
and Definition 6.2 are equivalent for cluster-tilted algebras of tree-type.

Proposition 6.11. Assume C of tree-type, T cluster-tilting, and T ′, T ′′ in-
decomposable non-regular. Then T ′

τ= T ′′ if and only if T ′ ≡ T ′′, with ≡ as
defined in Section 3.

Proof. It is easy to see that T ′ ≡ T ′′ implies T ′ τ= T ′′.
For the converse, note that since C is of tree-type, so is any local slice. In

particular, by Proposition 6.5, the set [T ′] τ
=

is contained in a local slice of

tree-type. We may assume that T ′ τ= T ′′, and there is no element of [T ′] τ
=

in this local slice between them. It is easy to see that this can only happen
if T ′ ⊕ T ′′ ∈ add(τX ⊕ ϑX ⊕X) for some AR-triangle τX → ϑX → X →
in C. Hence T ′ ≡ T ′′. �

Now we are ready to jump trenches.
Assume T ∈ C is cluster-tilting and Σ a local slice with Σ ∩ add τT = 0.

There are two different cases:
(a) There are no summands of T in the connecting component to the

right of τ−Σ. In case there are also no regular direct summands of
T , the local slice Σ is homotopic to any local slice Σ′ such that there
are no direct summands of T left of (or in) τ−Σ′ (see Definition 6.1).
We proceed using this local slice.

In case there is at least one regular direct summand T ′ of T the
trench τ [T ′] τ

=
= {τT ′ | T ′ regular summand of T} is the one to jump.

That is, we also replace Σ by Σ′ as above, but they are not homotopic,
and, on the level of tilted algebras, we apply the generalized 2-APR
tilt associated with [T ′] τ

=
.
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(b) There is some direct summand of T finitely many steps to the right of
Σ (equivalently, DHomC(T,Σ) has a preprojective direct summand).
We may assume Σ to be as far to the right as possible inside its
homotopy class. Then any source of Σ is of the form τ2T ′ for some
T ′ ∈ addT . For any X ∈ τ−3Σ there is a non-zero map T → τX,
and hence X 6∈ addT . In particular, any equivalence class [T ′] τ

=

with T ′ ∈ τ−2Σ must be contained in τ−2Σ. Among these classes,
choose [T ′] τ

=
minimal with respect to τ

 Σ. We let Σ̃ be a local slice

containing [T ′] τ
=

, and such that all sinks of Σ̃ lie in [T ′] τ
=

. Choose
the slice Σ′ τ -orbit wise by

Σ′o =
{

Σ̃o if Σ̃o ∈ {τ−Σo, τ
−2Σo}

Σo otherwise

That is, we take Σ′ = Σ̃ if the slices Σ and Σ̃ don’t intersect, and
otherwise we choose the rightmost points of Σ and Σ̃ τ -orbit wise.

We now check that Σ′ is a “legal” slice, that is that Σ′∩add τT = 0.
Assume Σ′ ∩ add τT 6= 0, say τT ′′ ∈ Σ′. Then clearly τT ′′ ∈ Σ̃, and
T ′′ ∈ τ−2Σ. By the first property we have Hom(τT ′′, [T ′] τ

=
) 6= 0,

which, together with the second property, contradicts the minimality
in our choice of T ′. Hence Σ′ ∩ add τT = 0.

Now clearly replacing Σ by Σ′ jumps the trench τ [T ′] τ
=

, and it
remains to see that no other trenches are jumped. Let T ′′ ∈ addT \
[T ′] τ

=
be indecomposable. If T ′′ 6∈ τ−2Σ then the trench τ [T ′′] τ

=

cannot be affected by our jump. If T ′′ ∈ τ−2Σ, then, by choice of
T ′, we have Hom(T ′′, T ′) = 0. Hence T ′′ is not in Σ̃, and thus τT ′′

is not in τ Σ̃. But the space between Σ and Σ′ is contained in τ Σ̃,
hence the trench τ [T ′′] τ

=
cannot have been jumped.

We illustrate the procedure above with an example.

Example 6.12. Let B be the cluster-tilted algebra of type with
quiver as depicted below.

1 3

2

(This is obtained from the hereditary algebra by mutating at the center ver-
tex.) Then the homotopy classes of local slices look as depicted in Figure 6.1.
We see that there are three maximal tilted subalgebras:

1 3

2
,

1 3

2
, and

1 3

2

Remark. Note that in the representation infinite case there could be less
maximal tilted subalgebras than one might expect. In case B is the endo-
morphism ring of a regular cluster-tilting object it only has one maximal
tilted subalgebra.
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τT3 T3

τT1 T1· · ·

· · ·

· · ·

· · ·

· · ·

· · · 1 3

2

τT3 T3

τT1 T1· · ·

· · ·

· · ·

· · ·

· · ·

· · · 1 3

2

τT3 T3

τT1 T1· · ·

· · ·

· · ·

· · ·

· · ·

· · · 1 3

2

Figure 6.1. The two homotopy classes of local slices for the
cluster-tilted algebra of Example 6.12. The light grey areas
mark the homotopy classes of local slices, the darker grey
marks the rightmost (upper picture), only (middle picture),
and leftmost (lower picture) local slices in their homotopy
class. Note that T2 is regular, and hence not to be seen in
the picture of the connecting component.
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[ABS1] I. Assem, T. Brüstle, and R. Schiffler. Cluster-tilted algebras as trivial exten-
sions. Bull. Lond. Math. Soc., 40(1):151–162, 2008.
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