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Abstract. We introduce (n + 1)-preprojective algebras of algebras of global dimension n. We
show that if an algebra is n-representation-finite then its (n + 1)-preprojective algebra is self-
injective. In this situation, we show that the stable module category of the (n+1)-preprojective
algebra is (n+1)-Calabi-Yau, and, more precisely, it is the (n+1)-Amiot cluster category of the
stable n-Auslander algebra of the original algebra. In particular this stable category contains
an (n + 1)-cluster tilting object. We show that even if the (n + 1)-preprojective algebra is not
self-injective, under certain assumptions (which are always satisfied for n ∈ {1, 2}) the results
above still hold for the stable category of Cohen-Macaulay modules.
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1. Introduction

The preprojective algebras Λ̃ of path algebras Λ of quivers have been introduced by Gelfand
and Ponomarev to understand representation theory of path algebras of quivers. They have
played important roles in representation theory and other areas of mathematics, e.g. resolutions
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of Kleinian singularities, crystal bases of quantum groups, quiver varieties, and cluster theory.
Preprojective algebras satisfy many important homological properties, in particular they give
rise to 2-Calabi-Yau triangulated categories: For the Dynkin case the stable module category

mod Λ̃ is 2-Calabi-Yau [AR2, CB2], and for the non-Dynkin case the bounded derived category

Db(fd Λ̃) of finite dimensional modules is 2-Calabi-Yau [CB2]. Moreover Geiss-Leclerc-Schröer

[GLS1, GLS2] constructed a 2-cluster tilting object in the stable category mod Λ̃ for the Dynkin
case. These properties play an important role in the categorification of Fomin-Zelevinsky cluster
algebras [FZ]. Also there is another important class of 2-Calabi-Yau triangulated categories
in cluster theory, namely cluster categories [BMR+] and their generalization given by Amiot
[Ami1, Ami2], and sometimes there exists a triangle equivalence between the stable category

mod Λ̃ and a cluster category. Actually for each Dynkin case Amiot [Ami2] constructed a triangle
equivalence

mod Λ̃ ≈ C 2
Γ

with the 2-Amiot cluster category C 2
Γ of the stable Auslander algebra Γ of Λ. This gives another

proof of the existence of a 2-cluster tilting object in mod Λ̃, since Amiot cluster categories contain
cluster tilting objects [Ami2].

The aim of this paper is to introduce a higher analogue of preprojective algebras and generalize
the properties of classical preprojective algebras discussed above to the higher case. In particular
we compare them with higher (Amiot-)cluster categories [BM, Tho, Zhu, Guo]. For an algebra
Λ of global dimension at most n, its (n+1)-preprojective algebra is defined as the tensor algebra

Λ̃ = TΛ ExtnΛ(DΛ,Λ) :=
⊕
i>0

ExtnΛ(DΛ,Λ)⊗
i
Λ .

This is a generalization of Crawley-Boevey’s description Λ̃ = TΛ Ext1
Λ(DΛ,Λ) of classical prepro-

jective algebras [CB1] and Assem-Brüstle-Schiffler’s description of cluster tilted algebras [ABS].

Our (n+1)-preprojective algebra Λ̃ is the 0-th homology of Keller’s derived (n+1)-preprojective
DG algebra Π [Kel1] which plays an important role in the study of n-Amiot cluster categories

[Ami2, Guo], and in particular Λ̃ is isomorphic to the n-Calabi-Yau tilted algebra EndCn
Λ

(Λ).

While it is known that Π is always a bimodule (n+1)-Calabi-Yau DG algebra [Kel1], our (n+1)-

preprojective algebra Λ̃ is not so nice in general from a homological viewpoint. Therefore we have
to restrict ourselves to certain nice classes of algebras Λ, which are called “n-representation-finite
algebras” or, more generally, “algebras satisfying the vosnex property”.

The notion of n-representation-finite algebras has been introduced by the authors in [IO] in the
context of higher Auslander-Reiten theory. We define a finite dimensional algebra to be weakly
n-representation-finite if there is an n-cluster tilting object in the module category, and we call
it n-representation-finite if moreover it has global dimension at most n (see Section 2). Various
papers have constructed classes of n-representation finite algebras [EH, HI1, HI2, HZ1, HZ2, HZ3,
Iya1, Iya2, Iya3, IO]. In this case the n-Amiot cluster category C n

Λ is Hom-finite, and the (n+1)-

preprojective algebra Λ̃ is a finite dimensional algebra which, regarded as a Λ-module, gives the
unique basic n-cluster tilting object in mod Λ [Iya3] (see Theorem 2.21). One of our main results

in this paper is that the (n + 1)-preprojective algebra Λ̃ of an n-representation finite algebra
Λ is self-injective (see Corollary 3.4). As an application we give a complete classification of
iterated tilted 2-representation-finite algebras (see Theorem 3.12) by using Ringel’s classification
of self-injective cluster tilted algebras [Rin2]. Moreover we show that any quasi-tilted algebra of
canonical type (2, 2, 2, 2) is 2-representation-finite (see Proposition 3.13). Thus, in contrast to
the (classical) 1-representation-finite situation, there is a 1-parameter family of 2-representation-
finite algebras.

For an n-representation-finite algebra Λ, we study the stable module category mod Λ̃ (and a
derived category version of it, called mod U – see Theorem 2.16) in Section 4, and obtain the
following result.

Theorem 1.1. Let Λ be an n-representation-finite algebra.
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(1) (Corollary 4.6) The stable module category mod Λ̃ is an (n+ 1)-Calabi-Yau triangulated
category.

(2) (Theorem 4.15) We have a triangle equivalence

mod Λ̃ ≈ C n+1
Γ

between the stable module category of Λ̃ and the (n + 1)-Amiot cluster category of Γ,

where Γ is the stable n-Auslander algebra EndΛ(Λ̃) (see Definition 2.22).

(3) (Corollary 4.16) mod Λ̃ contains an (n+ 1)-cluster tilting object.

For the case n = 1 we recover the properties of classical preprojective algebras explained
above.

In the final Section of this paper we generalize the results above by weakening the assumption
that Λ is n-representation-finite. We introduce a homological condition called “vosnex property”
(see 3.5) which generalizes n-representation-finiteness. By definition this condition is always
satisfied in the cases n = 1 or 2. We generalize Theorem 1.1 and the main result of Keller-
Reiten [KR] for the case n = 2 by showing the following.

Theorem 1.2. Let Λ be an algebra satisfying the vosnex property.

(1) (Lemma 5.9, Corollary 5.12) Λ̃ is Iwanaga-Gorenstein of dimension at most 1, and the

stable category of Cohen-Macaulay modules CM(Λ̃) over Λ̃ is an (n + 1)-Calabi-Yau
triangulated category.

(2) (Theorem 5.43) We have a triangle equivalence

CM(Λ̃) ≈ C n+1
Γ ,

with the (n+1)-Amiot cluster category of Γ, where Γ is the stable endomorphism algebra

EndΛ(Λ̃).

(3) (Corollary 5.44) CM(Λ̃) contains an (n+ 1)-cluster tilting object.

Even for the case n = 2, we have the following properties of 2-Calabi-Yau tilted algebras
which were not known before.

Corollary 1.3 (n = 2). Let Λ be a finite dimensional algebra with gl.dim Λ 6 2 such that C 2
Λ

is Hom-finite. Then we have a triangle equivalence

CM(Λ̃) ≈ C 3
Γ ,

where Γ = EndΛ(Λ̃). In particular CM(Λ̃) contains a 3-cluster tilting object.

It should be noted that all results of Section 4 are contained in the corresponding results of
Section 5. However we give separate proofs for most of them, since the proofs in the setup of
Section 4 are considerably shorter and more explicit.

In Appendix A we give a detailed explanation of how we use the universal property of n-Amiot
cluster categories.

Acknowledgements. We would like to thank Claire Amiot and Bernhard Keller for helpfully
explaining to us how to apply their results.

2. Background and notation

We refer to [ARS, ASS, Rin1] for general background on representation theory of algebras, to
[Aus1, Aus2, AR1] for the theory of functor categories and to [AHHK, Hap] for tilting theory
and derived categories.

Throughout this paper we fix a base field k, which is not necessarily algebraically closed. All
algebras and categories are assumed to be k-algebras and k-categories, respectively. Moreover,
all algebras are assumed to be basic and connected.

We say a category T is Hom-finite if for any X,Y ∈ Ob T the k-vector space HomT (X,Y )
is finite dimensional.
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Notation 2.1. We use the notation HomT (X,Y ) for the morphisms in T from X to Y , if
X,Y ∈ Ob T , and, by abuse of notation, also for morphisms in mod T from X to Y , if X and
Y are T -modules. Moreover, in some diagrams (when there is little space) we omit the Hom
and just write T (X,Y ). For T -modules X and Y we denote by HomT (X,Y ) the space of
morphisms in the stable module category.

Definition 2.2 ([BK]). Let T be a Hom-finite triangulated category. A Serre functor T S is
an auto-equivalence of T , such that there is an isomorphism

HomT (X,Y ) ∼= DHomT (Y, T SX)

natural in X and Y . If a Serre functor exists it is unique up to unique natural isomorphism.

Notation 2.3. Let T be a triangulated category with a Serre functor T S. As in [Iya3, IO] we
set

T Sn := T S[−n] : T T ,

where [1] denotes the suspension in T . Whenever there is no danger of confusion we omit the
left index T .

Definition 2.4 ([Kon]). Let T be a Hom-finite triangulated category. We say T is n-Calabi-
Yau if [n] is a Serre functor on T . Equivalently we could ask T to have a Serre functor S, and
Sn ∼= id.

The two most important types of triangulated categories for this paper are the following:

• The bounded derived category of mod Λ, for a finite dimensional algebra Λ, is denoted
by DΛ, or by D if there is no danger of confusion.
• The n-Amiot cluster category C n

Λ of a finite dimensional algebra Λ with gl.dim Λ 6 n
(see Subsection 2.1 below, and [Ami2, Ami1]).

Notation 2.5 ([Iya2]). Let Λ be a finite dimensional algebra. We denote by

τn = τΩn−1 : mod Λ mod Λ, and

τ−n = τ−Ω−(n−1) : mod Λ mod Λ

the n-Auslander-Reiten translation and inverse n-Auslander-Reiten translation, respectively.
Note that if Λ is an algebra with gl.dim Λ 6 n, then τ±n = H0(DΛ

S±1
n −).

We call an algebra Λ with gl.dim Λ 6 n τn-finite if τ−in Λ = 0 for sufficiently large i, or,
equivalently, if τ inDΛ = 0 for sufficiently large i. The equivalence of these two conditions can be
seen as follows:

τ−in Λ = 0⇐⇒ HomDΛ
(Λ, S−in Λ) = 0⇐⇒ HomDΛ

(SinDΛ, DΛ) = 0⇐⇒ τ in(DΛ) = 0.

2.1. n-Amiot cluster categories. For the convenience of the reader we recall the construction
and the most important properties of n-Amiot cluster categories.

It should be noted that while Amiot [Ami2, Ami1] formulates the results we recall in this
subsection only in case n = 2, they immediately generalize to arbitrary n.

Construction 2.6 (Amiot – see [Ami2, Ami1]). Let Λ be an algebra of finite global dimension,
such that Λ/Rad Λ is separable over k. We set Γ to be the DG algebra Λ ⊕ DΛ[−n − 1].
Projection Γ Λ yields a restriction functor DΛ DΓ. Now the n-Amiot cluster category is
defined to be the quotient category

C n
Λ = thickDΓ

(Λ)/ perf Γ,

where thickDΓ
(Λ) denotes the smallest thick subcategory of DΓ containing (the image of) Λ, and

perf Γ = thickDΓ
(Γ) denotes the perfect complexes over Γ.

Remark 2.7. Whenever we use the n-Amiot cluster category of an algebra Λ, we assume
Λ/Rad Λ to be separable over the base field k (see [CR, vdW]) – that is Λ/Rad Λ is a product
of matrix rings over skew fields, such that the centers of these skew fields are separable field
extensions of k. See the assumptions at the beginning of Section 2 in [Ami2] on why we need
this.



STABLE CATEGORIES OF HIGHER PREPROJECTIVE ALGEBRAS 5

Lemma 2.8 (Amiot – see [Ami2, Ami1]). The restriction functor induces a functor π : DΛ C n
Λ .

This functor commutes with the Serre functors of the two categories.

Lemma 2.9 (Amiot – see [Ami2, Ami1]). Let Λ be a finite dimensional algebra with gl.dim Λ 6
n. The n-Amiot cluster category C n

Λ is Hom-finite if and only if Λ is τn-finite.

The n-Amiot cluster category is the “algebraic n-Calabi-Yau” version of the derived category,
as indicated by the following theorem.

Theorem 2.10 ([Amiot – see [Ami2, Ami1]). Let Λ be an algebra with gl.dim Λ 6 n, which is
τn-finite. Then the n-Amiot cluster category is n-Calabi-Yau, and satisfies a universal property.
(See Appendix A, and in particular Theorem A.20 for details on the universal property.)

2.2. (n+ 1)-preprojective algebras.

Definition 2.11. Let Λ be an algebra of global dimension at most n. Then the (n + 1)-
preprojective algebra of Λ is

Λ̃ := TΛ ExtnΛ(DΛ,Λ),

that is the tensor algebra of the Λ-Λ-bimodule ExtnΛ(DΛ,Λ) over Λ.

Remark 2.12. In [Kel1] Keller introduced the notion of derived (n+ 1)-preprojective algebras.
The (n + 1)-preprojective algebras are the 0-th homology of his derived (n + 1)-preprojective
algebras.

One basic property of (n+ 1)-preprojective algebras is the following.

Lemma 2.13. Let Λ be an algebra of global dimension at most n. Then

Λ̃ ∼=
⊕
i>0

τ−n Λ

as Λ-modules.
In particular Λ is τn-finite if and only if Λ̃ is finite dimensional. In that case we also have

DΛ̃ ∼=
⊕
i>0

τnDΛ.

Proof. Since gl.dim Λ 6 n we have

τ−n = τ−Ω−(n−1) = Ext1
Λ(DΛ,Ω−(n−1)−) = ExtnΛ(DΛ,−) = ExtnΛ(DΛ,Λ)⊗Λ −.

This implies the first isomorphism. The remaining claims follow. �

2.3. n-cluster tilting subcategories.

Definition 2.14 ([IY]). Let T be a triangulated category. A full subcategory U ⊆ T is called
n-cluster tilting subcategory, if it is functorially finite and

U = {X ∈ T | HomT (U , X[i]) = 0 ∀i ∈ {1, . . . , n− 1}}
= {X ∈ T | HomT (X[−i],U ) = 0∀i ∈ {1, . . . , n− 1}}.

An object X in T is called n-cluster tilting object, if addX is an n-cluster tilting subcategory.
Similarly one defines n-cluster tilting subcategories and objects in abelian categories.

We have the following basic property.

Proposition 2.15 ([IY, Corollary 3.3]). Let T be a triangulated category, and let U be an
n-cluster tilting subcategory of T . Then for any X0 ∈ T , there exist triangles

Un−1 Xn−2 Xn−3 X1 X0

Un−2 Un−3 U1 U0

· · ·

· · ·

with Ui ∈ U .
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We will make use of the following examples of n-cluster tilting subcategories.

Theorem 2.16 ([Iya3, Theorem 1.22]). Let Λ be an algebra of global dimension at most n,
which is τn-finite. Then

U = add{SinΛ | i ∈ Z} ⊆ DΛ

is an n-cluster tilting subcategory of the derived category.

Theorem 2.17 (Amiot – see [Ami2, Ami1]). Let Λ be an algebra of global dimension at most
n, which is τn-finite. Then πΛ is an n-cluster tilting object in the n-Amiot cluster category C n

Λ .
Moreover the endomorphism algebra EndCn

Λ
(πΛ) of πΛ is isomorphic to the (n+1)-preprojective

algebra Λ̃ of Λ.

Remark 2.18. Note that U is the preimage of addπΛ under the functor from the derived
category to the n-Amiot cluster category as indicated in the following diagram.

U addπ(Λ)

DΛ C n
Λ

π

2.4. n-representation-finiteness.

Definition 2.19. (1) A finite dimensional algebra Λ is called weakly n-representation-finite
if mod Λ contains an n-cluster tilting object.

(2) It is called n-representation-finite if moreover gl.dim Λ 6 n.

Note that an algebra is weakly 1-representation-finite if and only if it is representation-finite,
and 1-representation-finite if and only if it is hereditary and representation-finite.

For examples of n-representation-finite algebras see [HI1, IO] and Section 3.2.
We have the following basic property of weakly n-representation-finite algebras.

Proposition 2.20. Let Λ be a weakly n-representation-finite algebra with an n-cluster tilting
object M in mod Λ.

(1) τn induces a bijection from isomorphism classes of indecomposable non-projective mod-
ules in addM to isomorphism classes of indecomposable non-injective modules in addM .

(2) If moreover gl.dim Λ 6 n (that is, Λ is n-representation-finite), then for any X ∈ addM
without non-zero projective summands we have τnX ∼= SnX.

Proof. (1) [Iya2, Lemma 2.3].
(2) Since Λ ∈ addM we have ExtiΛ(X,Λ) = 0 for 0 < i < n. This implies HomΛ(X,Λ) = 0

(see [Iya3, Lemma 2.3]). Thus τnX ∼= SnX. �

Using this, we have the following result.

Theorem 2.21 ([Iya3]). Let Λ be an n-representation-finite algebra. Then

(1) Λ̃ is the unique basic n-cluster tilting object in mod Λ, and
(2) for U as in Theorem 2.16 we have

U = add{Λ̃[in] | i ∈ Z}.

Definition 2.22. The n-Auslander algebra and stable n-Auslander algebra of an n-representation-

finite algebra Λ are defined as EndΛ(Λ̃) and EndΛ(Λ̃), respectively.

The following is the basic property of (stable) Auslander algebras.

Theorem 2.23 ([Iya3, Iya1]). Let Λ be n-representation-finite. Then

gl.dim EndΛ(Λ̃) 6 n+ 1, and gl.dim EndΛ(Λ̃) 6 n+ 1.
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3. n-representation-finiteness and self-injectivity

Theorem 3.1. Let Λ be an algebra with gl.dim Λ 6 n. Then the following are equivalent:

(1) Λ is n-representation-finite,
(2) DΛ ∈ U , and
(3) U = SU .

For the proof we will need the following easy lemma (e.g. [Iya3, Proposition 5.4]).

Lemma 3.2. Let Λ be an algebra with gl.dim Λ 6 n. Denote by (D60,D>0) the standard
t-structure of D . Then we have SnD>0 ⊆ D>0 and S−1

n D60 ⊆ D60.

Proof of Theorem 3.1. (1) =⇒ (3): We only have to show Λ ∈ SU and DΛ ∈ U . For any
indecomposable projective Λ-module P there exists an indecomposable injective Λ-module I
such that τ `nI

∼= P for some ` > 0 (Proposition 2.20(1)). By Proposition 2.20(2) we have
S`nI ∼= P . Thus P ∈ addS`nSΛ ⊆ SU . Hence we have Λ ∈ SU . Similarly we have DΛ ∈ U .

(3) =⇒ (2): This is clear.
(2) =⇒ (1): By assumption any indecomposable injective Λ-module I is in U , and hence of

the form I = S−`In PI for some indecomposable projective module PI . Hence, by Lemma 3.2, we
have

SinI ∈ D6−n for any i < 0,

SinI = Si−`In PI ∈ D>0 ∩D60 = mod Λ for 0 6 i 6 `I , and(3.1)

SinI = Si−`In PI ∈ D>n for any i > `I .

In particular we see that Λ is τn-finite. Set

M =
⊕

I indecomp.
injective

`I⊕
i=0

SinI.

Then addM = U ∩mod Λ. By Theorem 2.16 we have ExtiΛ(M,M) = 0 for any 0 < i < n.
Assume that a Λ-module X satisfies ExtiΛ(M,X) = 0 for all 0 < i < n. Then (3.1), together

with gl.dim Λ 6 n, implies HomD(U , X[i]) = 0 for any 0 < i < n. Hence, by Theorem 2.16, we
have X ∈ U ∩mod Λ = addM . Similarly any Λ-module X satisfying ExtiΛ(X,M) = 0 for all
0 < i < n belongs to addM . Therefore M is an n-cluster tilting Λ-module. �

3.1. Self-injective (n+ 1)-preprojective algebras.

Notation 3.3. As customary for algebras, we say that a category U is self-injective if projective
and injective objects in mod U coincide. (Here and throughout this paper mod U denotes the
category of finitely presented functors U op mod k.)

We obtain the following immediate consequence of Theorem 3.1.

Corollary 3.4. Let Λ be n-representation-finite. Then Λ̃ (∼= EndCn
Λ

(πΛ)) and U are self-
injective.

Proof. By Theorem 3.1, U is closed under S. Hence π(add Λ) = π(U ) is closed under S in C n
Λ .

Using Serre duality we have

DΛ̃ = DEndCn
Λ

(πΛ) ∼= HomCn
Λ

(πΛ,SπΛ) ∈ add EndCn
Λ

(π(Λ)) = add Λ̃.

Thus Λ̃ is self-injective. Similarly we have that U is self-injective. �

We now turn the implication of this corollary into an equivalence by strengthening the second
condition.

Notation 3.5. We say an n-cluster tilting subcategory U in a triangulated category T has
the “vanishing of small negative extensions”-property (= vosnex ), if HomT (U [i],U ) = 0 for all
i ∈ {1, . . . , n− 2}.

By abuse of notation we say that an algebra Λ has the vosnex property, if it is τn-finite, and
the category U (as in Theorem 2.16) has the vosnex property.
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Proposition 3.6. Let U be an n-cluster tilting subcategory in a triangulated category T . Then
the following conditions are equivalent.

(1) U = SU .
(2) U = U [n].
(3) HomT (U [i],U ) = 0 ∀i ∈ {1, . . . , n− 1}.
(4) U is self-injective, and has the vosnex property (see 3.5).

Before we start the proof, let us note that what it means in the situation of derived and
n-Amiot cluster categories.

Corollary 3.7. Let Λ be an algebra of global dimension at most n. Then the following are
equivalent.

(1) Λ is n-representation-finite.
(2) U = DSU .
(3) addπΛ = Cn

Λ
S(addπΛ).

(4) U is self-injective and has the vosnex property.

(5) Λ̃ is a self-injective algebra, and Λ has the vosnex property.

Finally note that for n = 2 the vosnex property is always satisfied, so that we obtain the
following.

Corollary 3.8. Let Λ be an algebra of global dimension at most 2. Then the following are
equivalent.

(1) Λ is 2-representation-finite.
(2) U = DSU .
(3) addπΛ = C 2

Λ
S(addπΛ).

(4) U is self-injective.

(5) Λ̃ is a self-injective algebra.

For the proof of Proposition 3.6 we need the following preliminaries.

Construction 3.9. Let T be a triangulated category, and A and B two subcategories. Then
A ∗B denotes the full subcategory of T , such that

Ob A ∗B = {X ∈ Ob T | ∃ a triangle A X B A[1] with A ∈ A and B ∈ B}.

Lemma 3.10 ([IY, Corollary 6.4]). Let U be an n-cluster tilting subcategory of a triangulated
category T . Set

Z = {X ∈ T | HomT (U , X[i]) = 0 for any 0 < i 6 n− 2}.

Then we have Z = U ∗U [1], and there is an equivalence

HomT (U ,−) : Z /(U [1]) mod U .

Lemma 3.11. Let U be an n-cluster tilting subcategory of a triangulated category T . Then
the following are equivalent:

(1) U has the vosnex property,
(2) SU ⊆ U ∗U [1], and
(3) S−1U ⊆ U [−1] ∗U .

Proof. We only show the equivalence (1) ⇐⇒ (2), the equivalence (1) ⇐⇒ (3) is dual. Let
Z = U ∗U [1] as in Lemma 3.10. Then

SU ⊆ Z

⇐⇒HomT (U ,SU [i]) = 0 ∀i ∈ {1, . . . , n− 2} (by Lemma 3.10)

⇐⇒HomT (U [i],U ) = 0 ∀i ∈ {1, . . . , n− 2} �

Using this, we prove the desired proposition.
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Proof of Proposition 3.6. Since SU = U [n], conditions (1) and (2) are clearly equivalent.
Next we show (2) ⇐⇒ (3) in the following sequence of equivalent conditions.

(3)⇐⇒ HomD(U [n],U [n− i]) = 0 ∀i ∈ {1, . . . , n− 1}
⇐⇒ U [n] ⊆ U since U is n-cluster tilting

⇐⇒ (2) since U and U [n] are both n-cluster tilting

For the equivalence (1) ⇐⇒ (4) first note that we have seen above that (1) =⇒ (3), and
clearly (3) =⇒ U vosnex. So (1) and (4) both imply U to have the vosnex property. Hence,
by Lemma 3.11 we know that SU ∈ U ∗U [1]. Now

all injective U -modules are projective

⇐⇒ ∀U ∈ U ∃U ′ ∈ U : DHomT (U,−)︸ ︷︷ ︸
HomT (−,SU)

∼= HomT (−, U ′) in mod U

⇐⇒ ∀U ∈ U ∃U ′ ∈ U : SU = U ′ (by Lemma 3.10)

⇐⇒ SU ⊆ U

Similarly all projective U -modules are injective if and only if U ⊆ SU .
Summing up we obtain the equivalence (1) ⇐⇒ (4). �

3.2. The 2-representation-finite iterated tilted algebras. As an application of Corol-
lary 3.8, we classify the iterated tilted algebras which are 2-representation-finite.

Theorem 3.12. Let Λ be an iterated tilted algebra. Then Λ is 2-representation-finite if and

only if Λ ∼= k̃Q/I, where k̃ is some finite dimensional skew field over k, and Q and I are one of
the following:

(1) Q = ◦
α1

◦
α2

· · ·
αn−2

◦
αn−1

◦︸ ︷︷ ︸
n vertices

and I = (α1 · · ·αn−1).

(2) Q is a full subquiver of the following quiver, obtained by choosing for any i ∈ {1, . . . , n−1}
exactly one of the arrows γi or δi (and all other arrows).

· · ·

· · ·

α1 α2

β1 β2 β3 βn−2 βn−1

γ1 δ1 γ2 δ2 γ3
δn−2

γn−1
δn−1

and

I =

 α1α2 − β1 · · ·βn−1

γiβi whenever γi ∈ Q1

βiδi whenever δi ∈ Q1

 .

Proof. Let H be a hereditary algebra derived equivalent to Λ. Then C 2
Λ ≈ C 2

H , and under this

equivalence πΛ corresponds to a cluster tilting object T ∈ C 2
H . In particular Λ̃ ∼= EndC 2

Λ
(πΛ) ∼=

EndC 2
H

(T ) is a cluster tilted algebra. By Corollary 3.8 we know that Λ̃ is self-injective. Ringel’s

classification [Rin2] of self-injective cluster tilted algebras determine possible H and T . This
immediately gives us the classification. �

Inspired by [Rin2] and Theorem 3.12 we also look at some quasi-tilted algebras.

Proposition 3.13. Let Λ be an iterated quasi-tilted algebra of canonical type (2, 2, 2, 2). If
gl.dim Λ 6 2 then Λ is 2-representation-finite.

Proof. The Auslander-Reiten quiver of a weighted projective line of type (2, 2, 2, 2), and hence
also the Auslander-Reiten quiver of the corresponding cluster category, consists of tubes of rank
1 and 2. Thus any object X in the cluster category satisfies

X ∼= τ2X = SS2X ∼= SX.



10 OSAMU IYAMA AND STEFFEN OPPERMANN

The claim now follows from Corollary 3.8 (3) =⇒ (1). �

Remark 3.14. Proposition 3.13 shows in particular, that there is a one-parameter family
of 2-representation-finite algebras (namely the canonical algebras of type (2, 2, 2, 2)). On the
other hand, it is known by [BGRS] that there are only countably many isomorphism classes of
representation-finite algebras. Thus in this way (weak) 2-representation-finiteness differs from
(weak) 1-representation-finiteness.

4. The stable category I: the n-representation-finite case

In the previous section we have seen that, for an n-representation-finite algebra Λ, the (n+1)-

preprojective algebra Λ̃ is self-injective. Hence its stable module category is a triangulated
category. In this section we will see that this category is precisely the (n + 1)-Amiot cluster

category of the stable Auslander algebra Γ = EndΛ(Λ̃). We will actually see that mod U ≈ DΓ,
and we have the following picture:

DΓ mod U

C n+1
Γ mod Λ̃

≈

≈
π push-down

4.1. The (n + 1)-Calabi-Yau property. First we prove that in the setup above mod Λ̃ is
(n + 1)-Calabi-Yau. We need the following notation, to be able to lift auto-equivalences from
categories to their (stable) module categories.

Definition 4.1. Let T be a category, α ∈ Aut(T ) an auto-equivalence. Let X ∈ mod T . Then
we denote by αX the module that is given by the composition

T
α−1

T
X

(mod k)op.

In particular we have αHomT (−, T ) = HomT (−, αT ) (this is the reason for choosing to compose
with α−1 above). Note that α induces auto-equivalences on mod T and mod T .

Proposition 4.2. Let T be a triangulated category with a Serre functor T S. Let U be a
subcategory satisfying T SU = U . Then mod U is a triangulated category with Serre functor

T S ◦ [−1]mod U .

Proof. We haveDHomT (U,−) = HomT (−, T SU). So projective and injective objects in mod U
coincide, and hence mod U is a triangulated category.

We calculate the inverse Auslander-Reiten translation τ−U of a U -module Y in the following
diagram.

Y DHomT (U0,−) DHomT (U1,−)

HomT (−, T SU0) HomT (−, T SU1)

τ−U Y [−2]mod U

T S−1Y

HomT (−, U0) HomT (−, U1) τ−U Y

By Auslander-Reiten duality we have

HomU (X,Y ) = DExt1
U (τ−U Y,X)

= DExt1
U (T S−1Y [2]mod U , X)

= DHomU (T S−1Y [1]mod U , X).

This shows that T S ◦ [−1]mod U is the Serre functor on mod U . �

Lemma 4.3. Let T be a triangulated category with a full subcategory U satisfying

• HomT (U ,U [i]) = 0 for i ∈ {1, . . . , n− 1}, and
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• U [n] = U .

Any triangles

Un+1 Xn−1 Xn−2 X1 U0

Un Un−1 Un−2 U2 U1

· · ·

with Ui ∈ U give rise to a long exact sequence

· · · T (−, U0[−n])

T (−, Un+1) T (−, Un) · · · T (−, U0)

T (−, Un+1[n]) T (−, Un[n]) · · ·

d−1

d0

in mod U , with Im d` = HomT (−, X1[`n+ 1]).

Proof. By the existence of the triangles in the lemma we have

Xn−1 ∈ U ∗U [1] and X1 ∈ U [−1] ∗U

Xn−2 ∈ U ∗U [1] ∗U [2] X2 ∈ U [−2] ∗U [−1] ∗U

...
...

Xi ∈ U ∗U [1] ∗ · · · ∗U [n− i] Xi ∈ U [−i] ∗U [−i+ 1] ∗ · · · ∗U

By the left inclusion above we have HomT (U , Xi[1]) = 0 for i > 2. By the right inclusion, and
since U = U [n], we have HomT (U , Xi[−1]) = 0 for i 6 n− 2. Hence for i ∈ {2, . . . , n− 1} we
obtain a short exact sequence of U -modules

T (−, Xi−1[−1])︸ ︷︷ ︸
=0

T (−, Xi) T (−, Ui) T (−, Xi−1) T (−, Xi[1])︸ ︷︷ ︸
=0

.

The leftmost and rightmost triangle give rise to exact sequences

T (−, Xn−1[−1]) T (−, Un+1) T (−, Un) T (−, Xn−1), and

T (−, X1) T (−, U1) T (−, U0) T (−, X1[1]).

Thus we have an exact sequence

T (−, Xn−1[−1]) T (−, Un+1) T (−, Un) · · · T (−, U1) T (−, U0) T (−, X1[1]).

Similarly (since U = U [`n]) we get an exact sequence

T (−, Xn−1[`n− 1]) T (−, Un+1[`n]) · · · T (−, U0[`n]) T (−, X1[`n+ 1])

for any ` ∈ Z. Now note that

T (−, Xn−1[n`− 1]) ∼= T (−, Xn−2[n`− 2]) ∼= · · · ∼= T (−, X1[n`− (n− 1)︸ ︷︷ ︸
=n(`−1)+1

])

on U . Hence we obtain the long exact sequence of the lemma by concatenating the exact
sequences above. �

Proposition 4.4. Let T be a triangulated category, and let U be an n-cluster tilting subcategory
of T , satisfying U [n] = U . Then we have [n+ 2]mod U = [n]T on mod U .

Proof. By Lemma 3.10 any object in mod U is of the form HomT (−, X) for some X ∈ U ∗
U [1]. Choose a triangle U1 U0 X U1[1] with Ui ∈ U . Also taking triangles as in
Proposition 2.15 for X[−1] we obtain a sequence of triangles as in Lemma 4.3. Now the claim
follows from the long exact sequence in Lemma 4.3. �

Theorem 4.5. Let T be a triangulated category with an n-cluster tilting subcategory U satis-
fying U [n] = U . Then mod U is a triangulated category, and mod U Sn+1 = T Sn on mod U .
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Proof. We have

mod U S ◦ [−n− 1]mod U = T S ◦ [−n− 2]mod U (by Proposition 4.2)

= T S ◦ [−n]T (by Proposition 4.4). �

We have the following analogous result to [KR] for the case n = 2.

Corollary 4.6. Let T be an n-Calabi-Yau triangulated category with an n-cluster tilting sub-
category U . Assume U = U [n]. Then mod U is (n+ 1)-Calabi-Yau.

Proof. Since T is n-Calabi-Yau, we have T Sn = 1 on T . By Theorem 4.5, we have mod U Sn+1 =

T Sn = 1 on mod U . Thus mod U is (n+ 1)-Calabi-Yau. �

4.2. A tilting object in mod U . In the rest of this section, let Λ be an n-representation-finite

algebra, which is not semisimple. Recall that the Λ-module Λ̃ is the unique basic n-cluster

tilting object in mod Λ. We denote by Λ̃P (respectively, Λ̃I) the maximal direct summand of Λ̃
(as a Λ-module) without non-zero projective (respectively, injective) direct summands.

For an algebra Γ, we denote by Γ̂ the repetitive category of Γ (see [Hap]).

Theorem 4.7. Let Γ = EndΛ(Λ̃) be the stable n-Auslander algebra of Λ. Then we have U ≈ Γ̂.

In the proof we will use the following piece of notation.

Notation 4.8. As in [Rin1], for full subcategories A and B of an additive category T we
denote by A ∨B the full subcategory whose objects are direct sums of an object in A and an
object in B.

We start by proving the following observation.

Lemma 4.9.
U =

∨
i∈Z

addSiΛ̃P .

Proof. For simplicity we set U ′ :=
∨
i∈Z addSiΛ̃P . Since, by Theorem 2.21(2) we have Λ̃P ∈ U ,

and by Theorem 3.1 we have SU = U we clearly have U ′ ⊆ U . Hence it only remains to show
that U ⊆ U ′. Since U =

∨
i∈Z addSinΛ by definition, we only have to show

(1) Λ ∈ U ′,

(2) S±1
n U ′ ⊆ U ′, or, equivalently, that S±1

n Λ̃P ∈ U ′.

To show (1) we first decompose Λ = Q ⊕ Q′, where Q is the sum of all indecomposable
projective Λ-modules P such that SiP is a projective Λ-module for any i > 0. Then S induces
an autoequivalence of addQ, and therefore SiQ ∈ addQ∀i ∈ Z. In particular Q is a projective
and injective Λ-module. Since Λ is not self-injective, we have Q′ 6= 0. We have HomDΛ

(Q′, Q) =
HomDΛ

(SiQ′,SiQ) = 0 for i � 0 by Proposition 2.20. Similarly we have HomDΛ
(Q,Q′) = 0.

Since Λ is connected this means Q = 0. Hence, for any indecomposable projective Λ-module
P , there is i > 0 such that SiP 6∈ add Λ. For the minimal such i we have SiP is an injective

non-projective Λ-module, and hence SiP ∈ add Λ̃P . This proves (1).

It follows that also Λ̃ = Λ ⊕ Λ̃P ∈ U ′, and hence that Λ[n] ∈ addSΛ̃ ⊆ U ′. Now claim (2)
follows, since

SnΛ̃P = Λ̃I ∈ add Λ̃ ⊆ U ′, and

S−1
n Λ̃P ∈ addS−1

n Λ̃ = add(S−1
n Λ̃I ⊕ S−1

n DΛ) = add(Λ̃P ⊕ Λ[n]) ⊆ U ′. �

Proof of Theorem 4.7. Since HomΛ(Λ̃P ,Λ) = 0 by Proposition 2.20(2), we have Γ = EndΛ(Λ̃) =

EndΛ(Λ̃P ).
By Lemma 4.9, we only have to show that

HomD(Λ̃P ,Si(Λ̃P )) =


0 i < 0

EndΛ(Λ̃P ) i = 0

DEndΛ(Λ̃P ) i = 1
0 i > 1

.
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The second line is clear, the third follows immediately from the definition of S.
To show the other lines, note that S−1D>n ⊆ D>n, and SD6n ⊆ D6n. From

S−1Λ̃P ∈ addS−1Λ̃ = add(S−1DΛ⊕ S−1Λ̃I) = add(Λ⊕ Λ̃P [−n]),

we have inductively

SiΛ̃P ∈ (add Λ) ∨D>n

for any i < 0. Thus we have the first line.
From

S2Λ̃P = SΛ̃I [n] ∈ addS(Λ⊕ Λ̃P )[n] ⊆ add(DΛ[n]) ∨D6−2n,

we have inductively

SiΛ̃P ∈ addDΛ[n] ∨D6−2n

for any i > 1. Thus, since gl.dim Λ 6 n, we have the last line. �

Our main motivation for looking at the repetitive category is that, by [Hap], it is closely related
to the derived category. Hence we obtain the following immediate consequence of Theorem 4.7.

Here we denote by R : mod Γ = mod(add Λ̃P ) mod U the inclusion induced by the projection

U addΛ Λ̃P . Since R is exact it induces a functor DΓ DU , which will also be denoted by
R.

Corollary 4.10. (1) In the situation of Theorem 4.7 we have

mod U ≈ DΓ.

(2) The equivalence in (1) can be chosen to be the composition of the functor R : DΓ DU

and the projection from DU onto mod U .

Proof. (1) By Theorem 4.7 we have mod U ≈ mod Γ̂. Since gl.dim Γ 6 n + 1 < ∞ by

Theorem 2.23, we have mod Γ̂ ≈ DΓ by [Hap].

(2) Under the equivalence mod Γ̂ ≈ mod U given by Theorem 4.7, Γ corresponds to RΓ. It

is a general fact for repetitive categories that Γ is a tilting object in mod Γ̂. Thus our
composed functor DΓ DU mod U sends the tilting object Γ ∈ DΓ to the tilting
object RΓ ∈ mod U , hence is an equivalence. �

As an application for the case n = 1, we have the following results, which show a surprising
commutativity of mod− and −̂, and of mod− and D−.

Corollary 4.11. (1) Let Λ be a representation-finite hereditary algebra. The we have equiv-
alences

mod Λ̂ ≈ m̂od Λ and mod DΛ ≈ Dmod Λ.

(2) Let Λ and Λ′ be representation-finite hereditary algebras. If Λ and Λ′ are derived equiv-
alent, then their stable Auslander algebras are derived equivalent.

Proof. (1) By [Hap] and Theorem 4.7, we have

mod Λ̂ ≈ DΛ ≈ U ≈ m̂od Λ.

The second equivalence now follows from Corollary 4.10.
(2) By (1) we have

Dmod Λ ≈ mod DΛ ≈ mod DΛ′ ≈ Dmod Λ′ . �

One can show the corresponding statement to (2) above for n-representation-finite algebras,
see [Lad1]. Notice that (2) above is not valid if we replace “stable Auslander algebras” by
“Auslander algebras”.
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4.3. The (n+1)-Amiot cluster category and mod Λ̃. Since, by construction, U is a covering

of addπΛ, we have an exact push-down functor mod U mod(addπΛ) = mod Λ̃. It maps

projectives to projectives, so it also induces a push-down functor mod U mod Λ̃. The aim of
this subsection is to show that the upper equivalence in the following diagram (which we found
in Corollary 4.10) induces the lower equivalence.

DΓ mod U

C n+1
Γ mod Λ̃

≈

≈
π push-down

In particular this will show that mod Λ̃ is equivalent to the (n+ 1)-Amiot cluster category of Γ,
and hence has an (n+ 1)-cluster tilting object.

Our first task is to construct a functor C n+1
Γ mod Λ̃. We use the universal property of the

(n+ 1)-Amiot cluster category (see Appendix A, in particular Theorem A.20).

Clearly Λ̃P is an ideal of Λ̃, hence in particular a Λ̃ ⊗k Λ̃op-module. Since Λ is a subalgebra

of Λ̃, the right action of Λ̃ on Λ̃P gives a k-algebra homomorphism

Λ̃ EndΛ(Λ̃P ) = Γ,

and hence a functor

(4.1) proj Λ̃ proj Γ.

We denote by A : DΓ D
Λ̃

the induced restriction functor.

Lemma 4.12. We have the following commutative diagram:

DΓ DU

D
Λ̃

R

push-down
A

Proof. The push-down functor DU D
Λ̃

is induced by the functor

proj Λ̃ Add U

Λ̃
⊕
i∈Z

SinΛ,

where Add U is the smallest full subcategory of D(Mod Λ) containing U and closed under arbi-

trary direct sums. Recall that the functor R is induced by the projection functor U addΛ Λ̃P .
The composition of these functors

proj Λ̃ Add U AddΛ Λ̃P = Proj Γ

coincides with the functor in (4.1). Thus we have the commutativity. �

We have the following commutative diagram.

(4.2)

DΓ DU mod U

D
Λ̃ mod Λ̃C n+1

Γ

R

≈

push-down push-down
A

π

We will find a triangle functor H : C n+1
Γ mod Λ̃ making (4.2) commutative. We need the

following observation.



STABLE CATEGORIES OF HIGHER PREPROJECTIVE ALGEBRAS 15

Proposition 4.13. In the setup above there is a triangle

X A(DΓ[−n− 1]) A(Γ) X[1]

in D
Λ̃⊗kΓop, such that the image of X under the forgetful functor D

Λ̃⊗kΓop D
Λ̃

belongs to

perf Λ̃. (Note that A(Γ) and A(DΓ) are naturally Λ̃ ⊗k Γop-modules, where the right Γ-module
structure comes from the natural action on Γ and DΓ, respectively.)

Proof. Note that

A(Γ) = HomΛ(Λ̃P , Λ̃P ) = HomΛ(τ−n Λ̃, Λ̃P ) = DExtnΛ(Λ̃P , Λ̃)

as Λ̃⊗k Γop-modules, and similarly

A(DΓ[−n− 1]) = DHomΛ(Λ̃P , Λ̃P )[−n− 1] = DHomΛ(Λ̃P , Λ̃)[−n− 1].

Since RHomΛ(Λ̃P , Λ̃) is concentrated in degrees 0 and (−n) we have a triangle

DExtnΛ(Λ̃P , Λ̃)[n] DRHomΛ(Λ̃P , Λ̃) DHomΛ(Λ̃P , Λ̃)︸ ︷︷ ︸
=A(DΓ)

DExtnΛ(Λ̃P , Λ̃)︸ ︷︷ ︸
=A(Γ)

[n+ 1]

in D
Λ̃⊗kΓop . It remains to show that DRHomΛ(Λ̃P , Λ̃) ∈ perf Λ̃. We have Λ̃P ∈ perf Λ since

gl.dim Λ <∞, so in D
Λ̃

we have

DRHomΛ(Λ̃P , Λ̃) ∈ thickDRHomΛ(Λ, Λ̃)

= thickDΛ̃ = perf Λ̃ �

Using the universal property of (n+ 1)-Amiot cluster categories we have the following conse-
quence of Proposition 4.13.

Proposition 4.14. There is a triangle functor H : C n+1
Γ mod Λ̃ making Diagram (4.2) com-

mutative.

Proof. This follows from the universal property of the (n+1)-Amiot cluster category and Propo-
sition 4.13 above. We will give details on the proof in Appendix A, since this requires a lot of
background on DG categories, which is not closely related to the main subjects of this paper. �

Now we are ready to prove the following result.

Theorem 4.15. The functor H : C n+1
Γ mod Λ̃ is an equivalence.

Proof. We first check that H is fully faithful on the image of DΓ = mod U . Indeed, for X,Y ∈
mod U we have

HomCn+1
Γ

(X,Y ) = HomDΓ/(DΓ
Sn+1)(X,Y )

= Hommod U /(mod U Sn+1)(X,Y )

=
∐
i∈Z

HomU (X,mod U Sin+1Y )

=
∐
i∈Z

HomU (X,DΛ
SinY ) (by Theorem 4.5)

= HomU /(DΛ
Sn)︸ ︷︷ ︸

=Λ̃

(X,Y )

(here, by abuse of notation, we denote the images of X and Y in the various categories by X
and Y ).

Now, since C n+1
Γ is generated as a triangulated category by the image of DΓ, the functor H is

fully faithful on the entire C n+1
Γ .

Finally note that all simple Λ̃-modules are in the image of the push-down functor mod U mod Λ̃,
so they are also in the image of H. Therefore H is dense. �

Corollary 4.16. Let Λ be an n-representation-finite algebra.
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(1) The category mod Λ̃ is (n + 1)-Calabi-Yau triangulated with an (n + 1)-cluster tilting
object.

(2) The algebra Λ̃ is weakly (n + 1)-representation-finite. A cluster tilting object in mod Λ̃

is given by HomΛ(Λ̃, Λ̃).

Proof. (1) follows immediately from Theorems 4.15 and 2.17.

(2) follows from (1), since for any M ∈ mod Λ̃, we have that the image of M in mod Λ̃ is

(n+ 1)-cluster tilting if and only if M ⊕ Λ̃ is (n+ 1)-cluster tilting in mod Λ̃. By Theorem 2.17
the image of Γ is a cluster tilting object in C n+1

Γ . By Theorem 4.15

H(Γ) = A(Γ) = HomΛ(Λ̃P , Λ̃P )

is an n-cluster tilting object in mod Λ̃. Adding Λ̃ we obtain the cluster tilting object HomΛ(Λ̃P , Λ̃P )⊕
Λ̃ in mod Λ̃. Finally note that

HomΛ(Λ̃P , Λ̃P )⊕ Λ̃ = HomΛ(Λ̃I , Λ̃I)︸ ︷︷ ︸
=HomΛ(Λ̃,Λ̃I)

⊕HomΛ(Λ̃, DΛ) = HomΛ(Λ̃, Λ̃),

so HomΛ(Λ̃, Λ̃) is (n+ 1)-cluster tilting in mod Λ̃ as claimed. �

Remark 4.17. In [Iya3, Section 6] (also see [IO, Section 5]), the first author described ex-
plicitly the quivers and relations of the relative n-Auslander algebra n-Aus(Q) of Dynkin quiv-
ers Q. In the case of linear oriented As the (n − 1)-Auslander algebra (n − 1)-Aus(As) is
n-representation-finite, and has the n-Auslander algebra n-Aus(As) and the stable n-Auslander
algebra n-Aus(As−1). Hence Theorem 4.15 implies

mod ˜(n− 1)-Aus(As) ≈ C n+1
n-Aus(As−1)

(see also [IO, Theorem 5.7]).

Example 4.18. The 1-Auslander algebra (= classical Auslander algebra) of A4 is given by the
left quiver with relations below. Its 2-preprojective algebra is given by the right quiver below,
with commutativity relations in all squares, and zero-relations where the squares are cut off on
the border.

1-Aus(A4): ˜1-Aus(A4):

The stable module category of the algebra ˜1-Aus(A4) is the same at the 3-Amiot cluster category
of the 2-Auslander algebra of A3, whose quiver is depicted below.

2-Aus(A3):

5. The stable category II: the vosnex case

In this section we generalize the results of the previous section to the following setup: Λ is
an algebra of global dimension gl.dim Λ 6 n, satisfying the vosnex property. Recall (see 3.5)
that this means that Λ is τn-finite (i.e. τ−in Λ = 0 for i � 0 – see 2.5), and the cluster tilting



STABLE CATEGORIES OF HIGHER PREPROJECTIVE ALGEBRAS 17

subcategory U ⊆ DΛ (see 2.16) satisfies HomDΛ
(U [i],U ) = 0 for i ∈ {1, . . . , n−2}. Recall that

for n = 2 the latter condition vanishes, so that in that case we only assume the algebra Λ to be
τ2-finite.

5.1. One-sided n-cluster tilting objects in mod Λ. The aim of this subsection is to show

that Λ̃ is the unique basic right n-cluster tilting object in mod Λ (Theorem 5.2), and dually

DΛ̃ is the unique basic left n-cluster tilting object in mod Λ. Moreover we will show that

gl.dim EndΛ(Λ̃) 6 n+ 1.

Definition 5.1. Let A be an abelian category. An object M ∈ A is called right n-cluster
tilting object, if

addM = {X ∈ A | ExtiA (X,M) = 0 ∀i ∈ {1, . . . , n− 1}}.

The object M is called left n-cluster tilting object, if

addM = {X ∈ A | ExtiA (M,X) = 0 ∀i ∈ {1, . . . , n− 1}}.

Clearly an object M is an n-cluster tilting object if and only if it is a right n-cluster tilting
object and a left n-cluster tilting object.

The first aim of this subsection is to prove the following result.

Theorem 5.2. Let Λ be an algebra of global dimension at most n having the vosnex property.

(1) The Λ-module Λ̃ is the unique basic right n-cluster tilting object in mod Λ.

(2) The Λ-module DΛ̃ is the unique basic left n-cluster tilting object in mod Λ.

For the proof we will need the following preparation.

Proposition 5.3. Assume gl.dim Λ 6 n and Λ has the vosnex property. Then

(1) ExtiΛ(DΛ, Λ̃) = 0 for any i ∈ {2, . . . , n− 1}.
(2) ExtiΛ(Λ̃, Λ̃) = 0 for any i ∈ {1, . . . , n− 1}.

Remark 5.4. We have the functorial triangle

t<iX︸ ︷︷ ︸
∈D<i

Λ

X t>iX︸ ︷︷ ︸
∈D>i

Λ

(t<iX)[1]

in X ∈ DΛ induced by the standard t-structure on DΛ.

Proof of Proposition 5.3. For (1) we consider the following triangles (see Remark 5.4 above)

t<0(S−`n Λ)︸ ︷︷ ︸
∈D<0

S−`n Λ H0(S−`n Λ)︸ ︷︷ ︸
=τ−`

n Λ

(t<0(S−`n Λ))[1]

for ` > 0. We show the following statements by induction on ` > 0:

• t<0(S−`n Λ) ∈ D61−n, and
• ExtiΛ(DΛ, τ−`n Λ) = 0 for any i ∈ {2, . . . , n− 1}.

For ` = 0 the first claim is clear. The second claim follows since

ExtiΛ(DΛ,Λ) = HomDΛ
(DΛ[−n]︸ ︷︷ ︸
∈U

, Λ︸︷︷︸
∈U

[i− n]) = 0 for i ∈ {2, . . . , n− 1}

by the vosnex property.
Now assume the claims above holds true for `− 1. We apply S−1

n to the triangle for `− 1 and
obtain the triangle

(5.1) S−1
n (t<0(S−(`−1)

n Λ)) S−`n Λ S−1
n (τ−(`−1)

n Λ) S−1
n ((t<0 S−(`−1)

n Λ))[1].

Note that S−1
n (t<0 S−(`−1)

n Λ) ∈ D61−n
Λ , since inductively t<0 S−(`−1)

n Λ ∈ D61−n
Λ .
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By inductive assumption we also have ExtiΛ(DΛ, τ
−(`−1)
n Λ) = 0 for i ∈ {2, . . . , n− 1}. There-

fore S−1
n τ

−(`−1)
n Λ can have non-zero homology only in degrees 0, (1 − n), and (−n). Hence in

the triangle

(5.2) τ<0
n (S−1

n τ−(`−1)
n Λ) S−1

n τ−(`−1)
n Λ H0(S−1

n τ−(`−1)
n Λ)︸ ︷︷ ︸

=τ−`
n Λ

(τ<0
n (S−1

n τ−(`−1)
n Λ))[1]

we have τ<0
n (S−1

n τ
−(`−1)
n Λ) ∈ D61−n.

We obtain the following octahedron, where the triangle we are aiming for is the one in the
dotted box.

S−1
n t<0(S−(`−1)

n Λ) S−1
n t<0(S−(`−1)

n Λ)

τ−`n Λ[−1] t<0(S−`n ) S−`n Λ τ−`n Λ

τ−`n Λ[−1] t<0(S−1
n τ

−(`−1)
n Λ) S−1

n τ
−(`−1)
n Λ τ−`n Λ

S−1
n (t<0(S−(`−1)

n Λ))[1] S−1
n (t<0(S−(`−1)

n Λ))[1]

(5.1):

(5.2):

We see that

t<0(S−`n ) ∈ (S−1
n t<0(S−(`−1)

n Λ)) ∗ (t<0(S−1
n τ−(`−1)

n Λ)) ⊆ D61−n ∗D61−n = D61−n,

thus that the first claim holds for `.
To see that ExtiΛ(DΛ, τ−`n Λ) = 0 for i ∈ {2, . . . , n−1} we apply HomD(DΛ,−) to the triangle

X` S−`n Λ τ−`n Λ X`[1], and note that HomD(DΛ, S−`n Λ[i]) = HomD(Λ,S−`−1
n Λ[i−n]) = 0

by the vosnex property, and HomD(DΛ, X`[i+ 1]) = 0 since X` ∈ D61−n
Λ .

This completes the induction, and hence also the proof of (1).
(2) follows immediately from (1) by (the dual of) [Iya3, Proposition 2.5(a)]. �

Lemma 5.5. For any X ∈ mod Λ there is an exact sequence 0 Mn−1 · · · M0 X 0

with Mi ∈ add Λ̃.

Proof. By Proposition 2.15 there are triangles

Un−1 Xn−2 X2 X1 X0

Un−2 Un−3 U2 U1 U0

· · ·

X

with Ui ∈ U . Note that, since Λ ∈ U , for any U ∈ U we have

Hi(U) = HomDΛ
(Λ, U [i]) = 0

for i ∈ {1, . . . , n− 1} since U is n-cluster tilting,
for i ∈ {−1, . . . ,−(n− 2)} since U has the vosnex property.
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Hence, on the one hand we have

Hi(Un−2)︸ ︷︷ ︸
=0

Hi(Xn−2) Hi+1(Un−1)︸ ︷︷ ︸
=0

for i ∈ {1, . . . , n− 2}

Hi(Un−3)︸ ︷︷ ︸
=0

Hi(Xn−3) Hi+1(Xn−2)︸ ︷︷ ︸
=0

for i ∈ {1, . . . , n− 3}

...
...

Hi(U1)︸ ︷︷ ︸
=0

Hi(X1) Hi+1(X2)︸ ︷︷ ︸
=0

for i = 1,

and on the other hand we have

H−(i+1)(X)︸ ︷︷ ︸
=0

H−i(X1) H−i(U0)︸ ︷︷ ︸
=0

for i ∈ {1, . . . , n− 2}

H−(i+1)(X1)︸ ︷︷ ︸
=0

H−i(X2) H−i(X2)︸ ︷︷ ︸
=0

for i ∈ {1, . . . , n− 3}

...
...

H−(i+1)(Xn−3)︸ ︷︷ ︸
=0

H−i(Xn−2) H−i(Un−1)︸ ︷︷ ︸
=0

for i = 1.

In particular H1(Xi) = H−1(Xi) = 0 ∀i ∈ {1, . . . , n− 2}. Thus we get exact sequences

H−1(Xn−2)︸ ︷︷ ︸
=0

H0(Un−1) H0(Un−2) H0(Xn−2) H1(Un−1)︸ ︷︷ ︸
=0

H−1(Xi)︸ ︷︷ ︸
=0

H0(Xi+1) H0(Ui) H0(Xi) H1(Ui+1)︸ ︷︷ ︸
=0

i ∈ {1, . . . , n− 3}

H−1(X)︸ ︷︷ ︸
=0

H0(X1) H0(U0) H0(X) H1(X1)︸ ︷︷ ︸
=0

.

Gluing them, we have an exact sequence

H0(Un−1) H0(Un−2) · · · H0(U0) H0(X)︸ ︷︷ ︸
=X

.

Now the claim follows, since H0(U) ∈ add Λ̃ for any U ∈ U . �

Lemma 5.6 ([Iya3, Lemma 2.6]). Let X,Y ∈ mod Λ, and i ∈ {1, . . . , n− 1} such that

ExtjΛ(DΛ, X) = 0 ∀j ∈ {n− i+ 1, . . . , n− 1}.
Then there is a surjection

Extn−iΛ (Y,X) DExtiΛ(τ−n X,Y ).

Now we are ready to prove the main results of this subsection.

Proof of Theorem 5.2. We only show (1), claim (2) is dual.

We first show that Λ̃ is a right n-cluster tilting object. By Proposition 5.3(2) we know that

Λ̃ is n-rigid. For X ∈ mod Λ consider the following diagram, where the upper sequence is exact

(such a diagram exists by Lemma 5.5), the Mi are in add Λ̃, and the Xi are the respective images
of the maps.

0 Mn−1 Mn−2 · · · M1 M0 X 0

Xn−1 Xn−2 · · · X2 X1

Now assume ExtiΛ(X, Λ̃) = 0 for any i ∈ {1, . . . , n− 1}. Then

Ext1
Λ(X,X1) = Ext2

Λ(X,X2) = · · · = Extn−1
Λ (X,Xn−1) = 0.
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Hence the sequence X1 M0 X splits, and we have X ∈ add Λ̃. This completes the proof

that Λ̃ is a right n-cluster tilting object.
Now let T be any right n-cluster tilting object in mod Λ. By definition we have Λ ∈ addT .

Now note that by Proposition 5.3(1) and Lemma 5.6 we have epimorphisms

Extn−iΛ (T, τ−`n Λ) DExtiΛ(τ−(`+1)
n Λ, T )

for any ` > 0. Hence we can see inductively that τ−`n Λ ∈ addT for all ` > 0. Hence Λ̃ ∈ addT ,

and since Λ̃ is also a right n-cluster tilting object add Λ̃ = addT . �

Proposition 5.7. Let Λ be an algebra of global dimension at most n satisfying the vosnex

property. Then gl.dim EndΛ(Λ̃) 6 n+ 1 and gl.dim EndΛ(DΛ̃) 6 n+ 1.

Proof. We only prove the first claim, the second one is dual.
By Lemma 5.5, for any X ∈ mod Λ there is an exact sequence

Mn−1 Mn · · · M0 X

with Mi ∈ add Λ̃. Since, by Proposition 5.3(2) we have ExtiΛ(Λ̃, Λ̃) = 0 ∀i ∈ {1, . . . , n− 1} such

a sequence is automatically a Λ̃-resolution. Now the claim follows by a standard argument (e.g.
[EHIS, Lemma 2.1]). �

5.2. The Iwanaga-Gorenstein property.

Definition 5.8. An algebra (or category) is called Iwanaga-Gorenstein of dimension d if all
finitely generated projective left and right modules have injective dimension at most d.

The next lemma shows that the categories we are interested in here are Iwanaga-Gorenstein
of dimension at most 1.

Lemma 5.9. Let Λ be an algebra of global dimension at most n, having the vosnex property.

Then U and Λ̃ are Iwanaga-Gorenstein of dimension at most 1.

Proof. By Lemma 3.11(1 ⇐⇒ 2) we know that Λ has the vosnex property if and only if SU ⊆
U ∗ U [1]. Hence for any U ∈ U we have a triangle U1 U0 SU U1[1]. Now we apply
HomT (U ,−) to this triangle, and note that HomT (U , SU [−1]) = DHomT (U,U [1]) = 0. This
gives a projective resolution of the injective U -module HomT (−,SU) of length 1.

Dually, by Lemma 3.11(1 ⇐⇒ 3) we obtain an injective resolution of length 1 of projective
U -modules.

The same proof works for Λ̃. �

In the case of Iwanaga-Gorenstein algebras (or categories) we have the following natural
replacement for (stable) module categories.

Definition 5.10. Let U be an Iwanaga-Gorenstein category. We denote the category of Cohen-
Macaulay modules over U by

CM(U ) = {X ∈ mod U | ExtiU (X,P ) = 0∀i > 0 and any projective U -module P}.
It is well-known that CM(U ) forms a Frobenius category, and that it’s stable category CM(U ) =
CM(U )/(proj U ) is triangulated [Hap]. The inverse translation and translation are given by Ω
and Ω−CM, respectively. Here Ω denotes the “usual” syzygy functor, and Ω−CMX is the cokernel
of a left projective approximation of X.

5.3. The (n+ 1)-Calabi-Yau property. We have the following generalization of Theorem 4.5
and the main result of [KR].

Theorem 5.11. Let T be a triangulated category with an n-cluster tilting subcategory U sat-
isfying the vosnex property. Then CM(U ) is a triangulated category, and

CM(U )Sn+1 = T Sn on CM(U ).

Corollary 5.12. In the setup of Theorem 5.11 assume T is n-Calabi-Yau. Then CM(U ) is
(n+ 1)-Calabi-Yau.
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Remark 5.13. Lemma 5.9 and Theorem 5.11 are obtained independently by Beligiannis [Bel]

The rest of this subsection leads to the proof of Theorem 5.11. We will calculate Ω−CM by
using the following observation.

Lemma 5.14. Let T be a triangulated category, U ⊆ T . Assume X ∈ T is such that any map
from HomT (−, X) to a projective U -module is representable. Then any left U -approximation
X U gives rise to a left projective approximation HomT (−, X) HomT (−, U).

Proof. This follows immediately from the definitions. �

To apply this, we need the following Yoneda-type result.

Proposition 5.15. Let T be a triangulated category, and U ⊆ T an arbitrary subcategory.

(1) Assume HomT (U ,U [i]) = 0 for any i ∈ {1, . . . ,m} and HomT (U [i],U ) = 0 for any
i ∈ {1, . . . ,m}. Then for any

X ∈ U ∗U [1] ∗ · · · ∗U [m]

and any U ∈ U the natural map

HomT (X,U) HomU (HomT (−, X),HomT (−, U))

is an isomorphism.
(2) Assume HomT (U ,U [i]) = 0 for any i ∈ {1, . . . ,m} and HomT (U [i],U ) = 0 for any

i ∈ {1, . . . ,m− 1}. Then for any

X ∈ U ∗U [1] ∗ · · · ∗U [m]

and any U ∈ U the natural map

HomT (X,U) HomU (HomT (−, X),HomT (−, U))

is an epimorphism.

Proof. We will use induction as follows: (1m=0) and (2m=0) are clear by the Yoneda Lemma.
We show (1m) =⇒ [ (2m+1) and (1m+1) ].

Assume (1) it true for some m, and, in addition, the assumptions of (2m+1) are satisfied. Let
X ∈ U ∗U [1] ∗ · · · ∗U [m+ 1]. Then there is a triangle

Y U0 X Y [1]

with U0 ∈ U and Y ∈ U ∗U [1]∗ · · ·∗U [m]. This gives rise to the exact sequence of U -modules

HomT (−, Y ) HomT (−, U0) HomT (−, X) HomT (−, Y [1]).

The term HomT (U , Y [1]) vanishes, since HomT (U ,U [i]) = 0 for i ∈ {1, . . . ,m+ 1}. Applying
HomU (−,HomT (−, U)) to this exact sequence, and HomT (−, U) to the triangle above, we
obtain the following commutative diagram.

HomT (Y [1], U) HomT (X,U) HomT (U0, U) HomT (Y,U)

U
(T

(−, X), T
(−, U))

U
(T

(−, U0), T
(−, U))

U
(T

(−, Y ), T
(−, U))

∼=

By (1m) the right vertical map is an isomorphism, hence the left vertical map is onto, as claimed
in (2m+1).

If moreover HomT (U [m+ 1],U ) = 0, then HomT (Y [1], U) = 0. Hence the left vertical map
is an isomorphism, as claimed in (1m+1). �

Corollary 5.16. Let T be a triangulated category with a Serre functor T S. Let U ⊆ T be an
n-cluster tilting subcategory with T SU ⊆ U ∗U [1] ∗ · · · ∗U [`]. Then

(1) for any X ∈ U ∗U [1]∗· · ·∗U [n−1−`] any morphism from HomT (−, X) to a projective
U -module HomT (−, U) is uniquely representable by a morphism in HomT (X,U).
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(2) If ` > 0, then for any X ∈ U ∗U [1]∗ · · · ∗U [n− `] any morphism from HomT (−, X) to
a projective U -module HomT (−, U) is representable by a morphism in HomT (X,U).

Proof. We have

DHomT (U [i],U ) = HomT (U , T SU [i])

⊆ HomT (U ,U [i] ∗ · · · ∗U [i+ `])

= 0 for 0 < i < n− `

Then the claims follow from Proposition 5.15 by setting m = n − 1 − ` for (1), and m = n − `
for (2). �

We are now ready to prove the main result of this subsection.

Proof of Theorem 5.11. Fix M ∈ CM(U ). Then M is represented by some X ∈ U ∗ U [1].
Step I: We show T S−1

n M ∼= τ−mod U HomT (−, X[n − 1]). Since X ∈ U ∗ U [1] there is a
triangle

U1 U0 X U1[1]

with Ui ∈ U . This gives rise to the exact sequence

HomT (−, U0[n− 1])︸ ︷︷ ︸
=0

HomT (−, X[n− 1]) HomT (−, U1[n]) HomT (−, U0[n]).

Note that the U -modules HomT (−, Ui[n]) = HomT (−, T S(T S−1
n Ui)) are injective, and

Db(mod U )S−1(HomT (−, Ui[n])) = HomT (−, T S−1
n Ui)

are the corresponding projective U -modules. Hence we obtain the exact sequence

HomT (−, T S−1
n U1) HomT (−, T S−1

n U0) τ−mod U HomT (−, X[n− 1]).

In other words, we have

T S−1
n M ∼= τ−mod U HomT (−, X[n− 1]).

Step II: We now show M ∼= Ωn HomT (−, X[n− 1]).
By Proposition 2.15, we have triangles

X0 X1 X2 Xn−2 Un−1

U0 U1 U2 Un−3 Un−2

· · ·

X

with Ui ∈ U . Note that, since HomT (U ,U [i]) = 0∀i ∈ {1, . . . , n − 1}, the maps Xi U i

above are left U -approximations.
Clearly we have Xi ∈ U ∗· · ·∗U [i+1]. Hence, by Corollary 5.16, any map from HomT (−, Xi)

to projective U -modules is representable. By Lemma 5.14, the maps Xi U i above induce left
approximations by projectives

HomT (−, Xi) HomT (−, U i).
Since HomT (−, Xi[1]) = 0 for i < n− 2 the maps

HomT (−, U i) HomT (−, Xi+1)

are onto for i < n− 2. Thus we have the following diagram of U -modules:

T (−, X0) T (−, X1) T (−, X2) T (−, Xn−2) T (−, Un−1)

T (−, U0) T (−, U1) T (−, U2) T (−, Un−3) T (−, Un−2)

· · ·ap ap ap ap

T (−, Xn−2[1])
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Therefore we can see inductively that for any i ∈ {0, . . . , n− 2}

HomT (−, Xi) ∼= Ω−iCMM

and that the maps

HomT (−, Xi) HomT (−, U i)
are mono. In particular we have

Ωn HomT (−, Xn−2[1]) ∼= HomT (−, X0) = M.

Now the assertion follows from

HomT (−, Xn−2[1]) ∼= HomT (−, Xn−3[2]) ∼= · · · ∼= HomT (−, X0[n− 1]).

(It should also be noted that the above isomorphic U -modules do not have to lie in CM(U ).)
Step III: We now prove the claim of the theorem.
Let N ∈ CM(U ). Then we have

DHomU (T S−1
n M,N)

= Ext1
U (N, τmod U T S−1

n M) (by AR duality)

= HomU (Ωn+1N,Ωnτmod U T S−1
n M) (since N ∈ CM(U ))

= HomU (Ωn+1N,M) (by Steps I and II)

Hence Ω
−(n+1)
CM(U ) ◦ T Sn is the Serre functor CM(U )S on CM(U ). In other words

CMSn+1 = Ωn+1 ◦ CM(U )S = T Sn. �

5.4. Identifying CM(U ) with the derived category of Γ. In this subsection we restrict our
attention back to the basic setup of this section: We have an algebra Λ of global dimension at
most n, satisfying the vosnex property (see 3.5). By Lemma 5.9 we know that U is Iwanaga-
Gorenstein of dimension at most 1. Our aim in this subsection is to identify CM(U ) as the
derived category of some algebra Γ. More precisely we will show the following.

Theorem 5.17. In the setup above

DΓ ≈ CM(U ),

with Γ = EndΛ(Λ̃).

We will give two equivalences. The first uses a tilting object T (see Construction 5.20 and
Theorem 5.21), while the latter uses restriction along some functor U proj Γ (see Construc-
tion 5.34 and Theorem 5.35).

Note that Theorem 5.17 generalizes Section 4.2, and specifically Corollary 4.10(1).

5.4.1. A tilting object. We set U i = add U SinΛ for i ∈ Z. Then U =
∨
i∈Z U i. We write

U <` =
∨
i<` U

i,U >` =
∨
i>` U

i and similar variations. For X ∈ mod U we set

SuppX = add{U ∈ U indecomposable | X(U) 6= 0}.

We observe that HomU (X,Y ) = 0 whenever X,Y ∈ mod U with SuppX ∩ SuppY = ∅.
We have an equivalence U /U >` ≈ U <`, which induces natural functors U U <` and

mod U <` mod U . Thus we may identify

mod U <` = {X ∈ mod U | SuppX ⊆ U <`}
full
⊆ mod U .

Similarly we identify

mod U >` = {X ∈ mod U | SuppX ⊆ U >`}
full
⊆ mod U .
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Remark 5.18. The following picture describes the distribution of the U i in D in comparison
to the standard t-structure.

D
D60

D>n

U 3 U 2 U 1 U 0 U −1 U −2 U −3· · · · · ·

That is, we have
U 60 ⊆ D60 and U >0 ⊆ D>n.

In particular note that HomD(U 60,U >0) = 0, and hence by shifting HomD(U 6`,U >`) = 0 for
any ` ∈ Z.

Observation 5.19. For X ∈ mod U there is a functorial short exact sequence

X>0 X X<0

with X>0 ∈ mod U >0 and X<0 ∈ mod U <0. (This functorial exact sequence should not be
confused with the functorial triangle in 5.4)

The aim of this subsection is to establish the following proposition. Together with the next
subsection it will provide a proof of Theorem 5.17 above.

For compacter notation we write PU = HomDΛ
(−, U) for the projective U -module corre-

sponding to U .

Construction 5.20. We set

V :=
⊕

U∈U <0

indec.
SuppPU 6⊆U <0

∈ U , and T := P>0
V .

Note that the direct sum is finite since there are only finitely many indecomposable objects
U ∈ U <0 satisfying SuppPU 6⊆ U <0 (this is equivalent to HomDΛ

(U >0, U) 6= 0).

Note that since T = P>0
V = ΩP<0

V (see the defining sequence in Observation 5.19) we have
T ∈ CM(U ).

Theorem 5.21. The object T as in Construction 5.20 above has endomorphism ring Γ, and the
composition

DΓ

T⊗L
Γ−

DU CM(U )

is an equivalence.

The first step towards the proof of this theorem is the following result.

Proposition 5.22. The object T as in Construction 5.20 is a tilting object in CM(U ). (That
is, we have HomU (T,Ωi

CMT ) = 0∀i 6= 0, and ∀X ∈ CM(U ) \ {0} there is i ∈ Z such that
HomU (T,Ωi

CMX) 6= 0.)

We prove this theorem in several shorter lemmas. First, in the Lemmas 5.24 and 5.26, we
check that T has neither negative nor positive self-extensions. Then, in Proposition 5.27, we
show that T generates CM(U ).

The following observation will be used throughout what follows.

Observation 5.23. Let ` ∈ Z. For any X ∈ mod U >` also ΩX ∈ mod U >`.

Lemma 5.24. In the setup above we have

HomU (P>0
U ,Ω−iCMP

>0
U ′ ) = ExtiU (P>0

U , P>0
U ′ ) = 0 ∀i > 0

for any U and U ′ in U .
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Proof. The first equality holds by general theory of stable categories of Frobenius categories.
For the second one, note that, since Supp ΩiP<0

U = Supp Ωi−1P>0
U ⊆ U >0 and SuppP<0

U ′ ⊆
U <0 we have HomU (ΩiP<0

U , P<0
U ′ ) = 0. Therefore also ExtiU (P<0

U , P<0
U ′ ) = 0 for any i > 0. Now

the short exact sequence P>0
U ′ PU ′ P<0

U ′ gives rise to a sequence

Exti−1
U (P>0

U , P<0
U ′ ) ExtiU (P>0

U , P>0
U ′ ) ExtiU (P>0

U , PU ′)︸ ︷︷ ︸
=0

.

For i > 1 we have Exti−1
U (P>0

U , P<0
U ′ ) = ExtiU (P<0

U , P<0
U ′ ) = 0, and for i = 1 we have HomU (P>0

U , P<0
U ′ ) =

0 since the supports are disjoint. Therefore, for any i > 0 we have ExtiU (P>0
U , P>0

U ′ ) = 0. �

Lemma 5.25. In the setup above we have Ωi(mod U >0) ⊆ mod U >0 for any i > n.

Proof. Let X ∈ mod U >0. We consider the short exact sequence X>0 X X60 (similar to
Observation 5.23).

Let Qn Qn−1 · · · Q0 X(Λ) be a projective resolution of X(Λ) as a Λ-module.
Since X ∈ mod U >0 we have SuppX60 ⊆ U 0 = add Λ. Thus we have a complex

0 PQn · · · PQ0 X60

of U -modules. Now the morphism PQ0 X60 factors through X X60. The composition
PQ1 PQ0 X vanishes, since it vanishes on add Λ ⊆ U . Hence we have a complex

(5.3) 0 PQn · · · PQ0 X 0.

Evaluating at Λ the complex (5.3) becomes an exact sequence, and evaluating at U <0 all terms
vanish. Thus all homologies of (5.3) belong to mod U >0. Now the claim of the lemma follows
from Ω(mod U >0) ⊆ mod U >0. �

Lemma 5.26. In the setup above we have

HomU (P>0
U ,ΩiP>0

U ′ ) = 0 ∀i > 0

for any U and U ′ in U .

Proof. We have

HomU (P>0
U ,ΩiP>0

U ′ ) = DHomU (ΩiP>0
U ′ ,CM(U )SP>0

U )

= DHomU (ΩiP>0
U ′ ,Ω

−(n+1)
CM CM(U )Sn+1P

>0
U )

= DHomU (Ωi+n+1P>0
U ′ ,U SnP>0

U ) (by Theorem 5.11)

= DHomU (Ωi+n+1P>0
U ′ , P

>1
(U SnU)) (by U SnP>0

U = P>1
U SnU )

= DExti+n+1
U (P>0

U ′ , P
>1
(U SnU)).

The short exact sequence P>1
(U SnU) P(U SnU) P<1

(U SnU) gives rise to an exact sequence

Exti+nU (P>0
U ′ , P

<1
(U SnU)) Exti+n+1

U (P>0
U ′ , P

>1
(U SnU)) Exti+n+1

U (P>0
U ′ , P(U SnU))︸ ︷︷ ︸

=0

.

Thus the proof is complete if we can show that Exti+nU (P>0
U ′ , P

<1
(U SnU)) = 0. Indeed, by Lemma 5.25

we know Ωn+iP>0
U ′ ∈ mod U >0 for any i > 0, and hence HomU (Ωn+iP>0

U ′ , P
<1
(U SnU)) = 0 by look-

ing at supports. Consequently also Exti+nU (P>0
U ′ , P

<1
(U SnU)) = 0. �

To complete the proof of Proposition 5.22, it remains to show that T generates the category
CM(U ).

Proposition 5.27. Let X ∈ CM(U ) be indecomposable and non-projective. Then there is

U ∈ U and n ∈ Z such that HomU (P>0
U ,Ωn

CMX) 6= 0.

For the proof we need the following preparations.

Observation 5.28. Let m > 0 such that τ−mn Λ = 0. (Note that such an m always exists since
Λ is assumed to be τn-finite.) Clearly we then have the following:
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(1) For U ∈ U <r we have SuppPU ⊆ U <r+m.
(2) For X ∈ mod U <r we have Supp ΩX ⊆ U <r+m.

Lemma 5.29. Let X ∈ CM(U ). Then ΩiX ∈ mod U >0 and Ω−iCMX ∈ mod U <0 for i� 0.

Proof. The first claim follows by repeated application of Lemma 5.25.
For the proof of the latter assertion let m be as in Observation 5.28. Let r > 0 such that

X ∈ mod U <r. Then

HomU (mod U >−2m ∩ CM(U ),Ω−iCMX) = HomU (Ωi(mod U >−2m ∩ CM(U )), X).

Note that, by Lemma 5.25, for i� 0 we have

Ωi(mod U >−2m ∩ CM(U )) ⊆ mod U >r ∩ CM(U ).

Thus, since X ∈ mod U <r, the above Hom-space vanishes. This means that the inclusion
(Ω−iCMX)>−2m Ω−iCMX factors through a projective U -module. Let PU Ω−iCMX be a projec-
tive cover. The left commutative triangle below gives rise to the right one.

(Ω−iCMX)>−2m Ω−iCMX

PU

(Ω−iCMX)<−2m (Ω−iCMX)>−2m (Ω−iCMX)>−2m

P>−2m
U

id

Thus (Ω−iCMX)>−2m is a direct summand of P>−2m
U , and we can write (Ω−iCMX)>−2m = PU1 ⊕

P>−2m
U2

with U1 ∈ U >−2m and U2 ∈ U <−2m. Since Ω−iCMX does not contain any projective

direct summands we have Ext1
U ((Ω−iCMX)<−2m, PU ′1) 6= 0 for any non-zero direct summand U ′1 of

U1. Hence HomU (Ω((Ω−iCMX)<−2m), PU ′1) 6= 0 for any such U ′1. Since Supp Ω((Ω−iCMX)<−2m) ⊆
U <−m (see Observation 5.28(2)) we have U1 ∈ U <−m. So we have U1⊕U2 ∈ U <−m, and hence
SuppPU1 ⊕ PU2 ⊆ U <0 by Observation 5.28(1). Thus

Supp Ω−iCMX ⊆ Supp(PU1 ⊕ PU2) ∪U <−2m ⊆ U <0. �

Proof of Proposition 5.27. Assume conversely, that there is an indecomposable non-projective
X ∈ CM(U ) such that HomU (P>0

U ,Ωn
CMX) = 0 for any U ∈ U and n ∈ Z. Possibly replacing

X by a suspension we may assume X ∈ mod U <0 (by Lemma 5.29).
We choose a minimal projective resolution

· · · PU2 PU1 PU0 X 0.

We will show that the induced exact sequence

(5.4) · · · P>0
U2

d1
P>0
U1

d0
P>0
U0

d−1

0 0

is a direct sum of complexes of the form · · · 0 H H 0 · · · with H ∈ mod U . For i
sufficiently large we have PUi = P>0

Ui
by Lemma 5.29. This is a contradiction, since in the upper

complex all maps are in the radical.
Since Sequence (5.4) is exact, we only have to show that the map from P>0

Ui
to the image

Im di−1 ⊆ P>0
Ui−1

is a split epimorphism for any i > 0. We show this by induction on i. The case

i = 0 is clear. Now consider the following diagram.

PUi+1

ΩiX

PUi

P>0
Ui+1

Im di

P>0
Ui

By inductive assumption the map P>0
Ui

Im di−1 splits, and hence Im di is a direct summand

of P>0
Ui

. Hence, by the assumption HomU (P>0
U ,ΩiX) = 0∀U, i we have HomU (Im di,Ω

iX) = 0.



STABLE CATEGORIES OF HIGHER PREPROJECTIVE ALGEBRAS 27

Therefore the middle vertical inclusion above factors through a projective module. Hence the
dashed diagonal map exists, making the triangle above it commutative. The lower dashed map
in the diagram, making the triangle including both dashed maps commutative, exists, since
clearly Im di (being a submodule of P>0

Ui
) can only map to the part of PUi+1 which is supported

in U >0. Hence the map P>0
Ui+1

Im di is a split epimorphism. �

5.4.2. The endomorphism algebra of the tilting object.

Theorem 5.30. Let T = P>0
V as in Construction 5.20. Then

EndU (T ) = EndU (T ) = EndΛ(Λ̃P ) = EndΛ(Λ̃)
def
= Γ,

where Λ̃P denotes the maximal summand of the Λ-module Λ̃ without non-zero projective direct
summands.

The proof will rely on the following proposition.

Proposition 5.31. (1) The exact restriction functor

res : mod U mod Λ: X X(Λ)

has a right adjoint, which is given by

G∗ : mod Λ mod U : X HomDΛ
(G−, X),

where G is the projection functor U U >0. (Note that add Λ ⊆ U , so the restriction
functor above makes sense.)

(2) The functors in (1) induce mutually inverse equivalences between mod Λ and

R := {X ∈ mod U | ∃ an exact sequence PU1 PU0 X with Ui ∈ add Λ}.
(3) For i 6 0 we have P>0

SinΛ
∈ R, and under the equivalence above P>0

SinΛ
corresponds to τ inΛ.

Proof. (1) We first check that G∗ is right exact: Let M1 M2 M3 be a short exact sequence
in mod Λ. Then we have an exact sequence

HomDΛ
(G−,M1) HomDΛ

(G−,M2) HomDΛ
(G−,M3) HomDΛ

(G−,M1[1])

in mod U . By Remark 5.18 we have U >0 ⊆ add Λ ∨ D>nΛ . Hence, since gl.dim Λ 6 n, we have
HomDΛ

(G−,M1[1]) = 0. The right exactness of the functor G∗ follows.
Now we prove claim (1). We have to show that for X ∈ mod Λ and Y ∈ mod U we have an

isomorphism
HomU (HomDΛ

(G−, X), Y ) ∼= HomΛ(X,Y (Λ))

which is natural in X and Y . By the right exactness of G∗ is suffices to consider the case X = Λ.
We have

HomU (HomDΛ
(G−,Λ), Y ) = HomU (HomDΛ

(U ,Λ)︸ ︷︷ ︸
=PΛ

, Y ) (since Λ ∈ U 60)

= Y (Λ) (by the Yoneda Lemma)

= HomΛ(Λ, Y (Λ))

This completes the proof of (1).
(2) Clearly the functors induce mutually inverse equivalences

add Λ addPΛ.

Now claim (2) follows form the fact that both functors are right exact.

(3) We start by observing that P>0
SinΛ

= HomDΛ
(G−,SinΛ). By Remark 5.18 we have SinΛ ∈

U i ⊆ D60
Λ . Thus we have a triangle

t<0(SinΛ) SinΛ H0(SinΛ) (t<0(SinΛ))[1]

in DΛ induced by the standard t-structure on D . Since U >0 ⊆ add Λ∨D>nΛ , and t<0(SinΛ), (t<0(SinΛ))[1] ∈
D<0

Λ , we have

HomDΛ
(G−, t<0(SinΛ)) = 0 = HomDΛ

(G−, (t<0(SinΛ))[1]),
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and thus

P>0
SinΛ

= HomDΛ
(G−,SinΛ) ∼= HomDΛ

(G−,H0(SinΛ)︸ ︷︷ ︸
∈mod Λ

).

We see that P>0
SinΛ

is in the image of the functor G∗, and thus in R. For the final claim note that

H0(SinΛ) = τ inΛ

by 2.5. �

Now we are ready to prove the main result of this subsection.

Proof of Theorem 5.30. By Proposition 5.31 we have EndU (T ) = EndΛ(T (Λ)), and by Propo-

sition 5.31(3) we have T (Λ) = Λ̃. Thus the middle equality follows.
We next show the rightmost equality. Clearly it suffices to show that HomΛ(τ inΛ,Λ) = 0 for

i < 0. As in the proof of Proposition 5.31(3) we consider the triangle

t<0(SinΛ) SinΛ H0(SinΛ)︸ ︷︷ ︸
=τ inΛ

(t<0(SinΛ))[1].

Since HomDΛ
(SinΛ,Λ) = 0 for i < 0, and HomDΛ

((t<0(SinΛ))[1],Λ) ⊆ HomDΛ
(D6−2

Λ ,Λ) = 0, the
claim follows.

It remains to show the first equality of the theorem. More precisely, we have to show that no
endomorphism of T factors through a projective U -module. For i < 0 we have

HomU (P>0
SinΛ

, PU ) = HomΛ(τ inΛ, PU (Λ)︸ ︷︷ ︸
=HomDΛ

(Λ,U)

=0 for U∈U >0

) = 0 for U ∈ U >0

HomU (P>0
SinΛ

, PU ) = HomΛ(τ inΛ, U) = 0 for U ∈ U 0 = add Λ

by the proof of the rightmost equality of the theorem above, and

HomU (PU , P
>0
SinΛ

) = P>0
SinΛ

(U) = 0 for U ∈ U <0.

Summing up these three vanishing properties we obtain the claim. �

5.4.3. Proof of Theorem 5.21. For the proof of Theorem 5.21 we will need the following two
observations.

The first is Wakamatsu’s Lemma for Krull-Schmidt triangulated categories.

Lemma 5.32 ([IY, Proposition 2.3(1)]). Let T be a Krull-Schmidt triangulated category and let
W be a thick subcategory of T . If W is contravariantly finite in T , then we have a t-structure
(W ,W ⊥) in T for W ⊥ := {T ∈ T | HomT (W , T ) = 0}.

Lemma 5.33. Let T be a triangulated category and X and Y be full subcategories of T . If
X and Y are contravariantly finite in T , then so is X ∗ Y .

Proof. Let T ∈ T , and let X T be right X -approximation. Denote by T ′ the cone of this
approximation. Let Y T ′ be a right Y -approximation, with cone T ′′. We obtain the following
octahedron:

T ′′[−1] T ′′[−1]

X H Y X[1]

X T T ′ X[1]

T ′′ T ′′
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Since the map T T ′ is a contravariant X -ghost, and the map T ′ T ′′ is a contravariant Y -
ghost it follows from the ghost lemma that the composition T T ′′ is a contravariant X ∗Y -
ghost. Since H ∈X ∗ Y it follows that H T is a right X ∗ Y -approximation. �

We are now ready to complete the proof of Theorem 5.21.

Proof of Theorem 5.21. The first claim is part of the statement of Theorem 5.30.
For the second statement we denote by F the composition

F : DΓ

T⊗L
Γ−

DU

proj
CM(U ).

Then F induces an equivalence perf Γ W := thick(T ) by Proposition 5.22. Since by Proposi-
tion 5.7 we have gl.dim Γ 6 n+ 1 it follows that DΓ = perf Γ. It remains to prove CM(U ) = W .

Let X := add{Γ[i]|i ∈ Z} ⊆ DΓ, and Y := add{T [i]|i ∈ Z} ⊆ CM(U ). Since gl.dim Γ 6 n+1
we have DΓ = X ∗ · · · ∗X (n+ 2 factors) by [ABIM, Theorem 5.5]. Hence, by the equivalence
DΓ W we also have W = Y ∗ · · · ∗ Y (n+ 2 factors).

Since CM(U ) is Hom-finite, and since for any M ∈ CM(U ) the spaces HomU (T,M [i])
are non-zero for only finitely many i, the subcategory Y ⊆ CM(U ) is contravariantly fi-
nite in CM(U ). By Lemma 5.33 we have that W is also contravariantly finite in CM(U ).
By Lemma 5.32 we have a t-structure (W ,W ⊥) in CM(U ), with W ⊥ = {M ∈ CM(U ) |
HomU (W ,M) = 0}. By Proposition 5.22 we have W ⊥ = 0. Thus we have CM(U ) = W . �

5.4.4. The equivalence via restriction.

Construction 5.34. We denote by r the functor

r : U addU T ≈ proj Γ

U
indec.

{
P>0
U if U ∈ U <0

0 if U ∈ U >0

We denote by R : mod Γ mod U the restriction functor along r. Clearly R is exact, so it
induces a functor DΓ DU , which will also be called R.

The aim of this subsection is to prove the following.

Theorem 5.35. The composition of R : DΓ DU with projection DU CM(U ) is a triangle
equivalence.

We will actually show the following more precise statement, relating this equivalence to the
one induced by T .

Proposition 5.36. In the setup above both compositions in the following diagram are naturally
isomorphic, where both right functors are natural projection.

DΓ

DU

DU

CM(U )

T [1]⊗L
Γ−

R

For the proof we will need the following construction.

Construction 5.37. We denote by σ = P>0
− the functor

U mod U : U P>0
U .

For X ∈ mod U we denote by σ∗M = HomU (P>0
− ,M) the module given by

U op mod k : U HomU (P>0
U ,M).

We observe that σ∗M is a U ⊗k EndU (M)op-module.

We have the following observations relating σ∗ to the claim of Proposition 5.36.

Lemma 5.38. We have (σ∗T )>0 ∼= T as U ⊗k Γop-modules.
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Proof. We have

(σ∗T )>0(U
indec.

) =

{
(σ∗T )(U) if U ∈ U >0

0 if U ∈ U <0 (by definition of ?>0)

=


HomU (P>0

U︸︷︷︸
=PU

, T ) if U ∈ U >0

0 if U ∈ U <0

(by definition of σ∗)

= T (U) (since T ∈ mod U >0) �

Lemma 5.39. We have (σ∗T )<0 ∼= R(Γ) as U ⊗k Γop-modules.

Proof. Similar to the proof of the previous lemma we have

(σ∗T )<0(U
indec.

) =

{
(σ∗T )(U) if U ∈ U <0

0 if U ∈ U >0 (by definition of ?<0)

=

{
HomU (P>0

U , T ) if U ∈ U <0

0 if U ∈ U >0 (by definition of σ∗)

Now note that

R(Γ)(U
indec.

) = HomU (r(U), T ) =

{
HomU (P>0

U , T ) if U ∈ U <0

0 if U ∈ U >0 �

Proof of Proposition 5.36. It suffices to show that there is a triangle T X R(Γ) T [1] in
DU ⊗kΓop such that X is mapped to perf U by the forgetful functor DU ⊗kΓop DU .

Clearly the short exact sequence

(σ∗T )>0︸ ︷︷ ︸
=T

σ∗T (σ∗T )<0︸ ︷︷ ︸
=R(Γ)

of U ⊗k Γop-modules gives rise to a triangle in DU ⊗kΓop (here the equalities in the subscript
hold by Lemmas 5.38 and 5.39, respectively). It remains to see that σ∗T ∈ perf U . Indeed we
have

σ∗T = HomU (P>0
− , T )

= HomU (P>0
− , PV ) (since T = P>0

V )

= RHomU (P>0
− , PV ) (since P>0

U ∈ CM(U )∀U)

= DRHomU (U S−PV , P>0
− )

Now note that since, by Lemma 5.9, we have PV ∈ thick(inj U ), and hence U S−PV ∈ perf U ,
and

σ∗T ∈ thick{DRHomU (PU , P
>0
− ) | U ∈ U }.

Note also that for U ∈ U <0 we have RHomU (PU , P
>0
− ) = 0. For U ∈ U >0 we have

DRHomU (PU , P
>0
− ) = DHomU (PU , P

>0
− )

= DHomU (PU , P−)

= DHomDΛ
(U,−)

∈ inj U

⊆ perf U (by Lemma 5.9) �
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5.5. The (n+ 1)-Amiot cluster category and CM(Λ̃). The construction in this subsection
mostly works as in the self-injective case in Section 4.3.

Here we show that the stable category of Cohen-Macaulay Λ̃ modules may be identified with
the (n+ 1)-Amiot cluster category of Γ as in the following diagram.

DΓ CM(U )

C n+1
Γ CM(Λ̃)

≈

≈
π push-down

As in Section 4.3, Λ̃P is an ideal of Λ̃, hence in particular a Λ̃ ⊗k Λ̃op-module. Since Λ is a

subalgebra of Λ̃, the right action of Λ̃ on Λ̃P gives a k-algebra homomorphism

Λ̃ EndΛ(Λ̃P ) = Γ,

and hence a functor
proj Λ̃ proj Γ.

We denote by A : DΓ D
Λ̃

the induced restriction functor.

Lemma 5.40. We have the following commutative diagram:

DΓ DU

D
Λ̃

R

push-down
A

Proof. The proof of Lemma 4.12 carries over. �

We now have the following commutative diagram.

(5.5)

DΓ DU CM(U )

D
Λ̃ CM(Λ̃)C n+1

Γ

R

≈

push-down push-down
A

π

We will find a triangle functor H : C n+1
Γ CM Λ̃ making diagram (5.5) commutative. We

need the following observation, which is shown by the proof of Proposition 4.13 without any
changes.

Proposition 5.41. In the setup above there is a triangle

X A(DΓ[−n− 1]) A(Γ) X[1]

in D
Λ̃⊗kΓop, such that X is mapped to perf Λ̃ by the forgetful functor D

Λ̃⊗kΓop D
Λ̃

.

Using the universality of the (n + 1)-Amiot cluster category, we have the following conse-
quences. See Appendix A for details on the proof.

Proposition 5.42. There is a triangle functor H : C n+1
Γ CM(Λ̃) making Diagram (5.5) com-

mutative.

Now we have the following result.

Theorem 5.43. The functor H : C n+1
Γ CM(Λ̃) is an equivalence.

Proof. The proof of Theorem 4.15 carries over word for word (with the reference to Theorem 4.5
replaced by a reference to Theorem 5.11). �
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Corollary 5.44. Let Λ be an algebra of global dimension at most n, such that the n-Amiot
cluster category C n

Λ is Hom-finite. Assume further that the category U (see Theorem 2.16)

has the vosnex property. Then the category CM(Λ̃) is (n + 1)-Calabi-Yau triangulated with an
(n+ 1)-cluster tilting object.

Proof. This follows immediately from Theorems 5.43 and 2.17. �

Example 5.45. Let Λ be the Auslander algebra of non-linearly oriented A3 as in the left picture
below, and n = 2.

Λ:

1

2

3

4

5

6

Λ̃ :

1

2

3

4

5

6
α

β

γ

δ

ε

ζ

η

ϑ

ι

Then Λ̃ is given by the right quiver above, subject to the relations

(γη, δϑ, ηα− ει, ϑβ − ζι, ιγ, ιδ, αγ, βδ, γε− δζ).

Calculating the τ−2 powers of the projective Λ modules we obtain

Λ: 1 2
3

1 2

4
3
2

5
3
1

6
4 5

3

τ−2 Λ: 4 5
6

4 5
− − −

Thus Λ̃P =
⊕

i>0 τ
−i
2 Λ = 4⊕5⊕ 6

4 5 , and EndΛ(Λ̃P ) = k[◦ ◦ ◦]. Thus, by Theorem 5.43

the category CM(Λ̃) is the classical 3-cluster category of A3.

A. Appendix: The universal property of the n-Amiot cluster category

In this appendix we work out in detail how Keller’s general result [Kel4, Theorem 4] applies
to our setup. Everything stated here is due to Keller, and can also be found in [Kel4] (also see
[Kel2, Kel3, Kel5] for background). To avoid set theoretical issues we assume all categories to
be small throughout this appendix.

A.1. Pretriangulated DG categories. See [Kel3], in particular Section 2 (note that in that
paper pretriangulated DG categories are called exact DG categories).

Definition A.1. A DG category is a Z-graded category (i.e. morphism spaces are Z-graded,
and composition of morphisms respects this grading) with a differential d of degree 1 satisfying
the Leibniz rule.

For a DG category X we denote by H0(X ) the category with the same objects as X , and
with HomH0(X )(X1, X2) = H0(HomX (X1, X2)).

Example A.2. Let A be an additive category. Then Cdg(A ), the set of complexes over A ,
becomes a DG category by setting

Homn
A (A,B) =

∏
i∈Z

HomA (Ai, Bi+n), and

d((fi)i∈Z) = (fidB − (−1)ndAfi+1) for (fi)i∈Z ∈ Homn
A (A,B).
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To calculate morphisms in H0(Cdg(A )) note that for A,B ∈ Cdg(A ) we have

Z0(HomA (A,B)) = {(fi)i∈Z ∈
∏
i∈Z

HomA (Ai, Bi) | d((fi)i∈Z) = 0}

= {(fi)i∈Z | dAfi+1 = fidB}
= usual maps of complexes

B0(HomA (A,B)) = {d((hi)i∈Z) | hi ∈ HomA (Ai, Bi−1)}
= (hidB + dAhi+1)i∈Z | hi ∈ HomA (Ai, Bi−1)}
= homotopies of complexes

and hence

H0(HomA (A,B)) = maps of complexes up to homotopy.

Definition A.3 (see [Kel5], Sections 2.3 and 3). Let X be a DG category. A DG X -module
is a DG functor X op Cdg(Mod k). By abuse of notation we also denote the DG category of
DG X -modules by Cdg(X ).

We denote the (non DG) category of DG X -modules by C(X ) = Z0(Cdg(X )), and we
denote by D(X ) the derived category of DG X -modules, that is the category obtained from
C(X ) by inverting quasi-isomorphisms.

A DG X -module is representable, if it is isomorphic to a DG X -module of the formHomX (−, X)
for some object X ∈X .

Definition A.4. A DG category X is called pretriangulated (or exact), if the class of repre-
sentable DG X -modules is closed under translations and mapping cones.

Note that by the Yoneda Lemma we have the subcategory of representable DG X -modules
is equivalent to X , for any DG category X .

Construction A.5 (Keller [Kel3, 2.2(d)]). Let X be a DG category. We denote by pretr X
the pretriangulated hull of X , that is the smallest subcategory of Cdg(X ) which contains the
representable DG X -modules, and is closed under translations and mapping cones.

The universal property of the n-Amiot cluster categories builds on the following result of
Keller.

Proposition A.6 (Keller [Kel3, 2.2(d)]). Let X be a DG category. Then

(1) pretr X is a pretriangulated DG category, and
(2) the natural functor X pretr X is universal among DG functors from X to pretri-

angulated DG categories.

The reason for calling these DG algebras pretriangulated, and the connection to our setup, is
the following.

Proposition A.7 (Keller [Kel3]). Let X be a pretriangulated DG category. Then H0(X ) is an
algebraic triangulated category. Moreover any algebraic triangulated category comes up in this
construction.

Example A.8 ([Kel3, 2.2(a)]). Let A be an additive category, X a full DG subcategory of
Cdg(A ) (see Example A.2 above) which is closed under translations and mapping cones. Then
X is a pretriangulated DG category, and (by the calculation in Example A.2) the triangulated
category H0(X ) is the corresponding subcategory of the homotopy category of complexes in A .

Notation A.9. We will mostly need the following instances of Example A.8 above, for which
we therefore introduce special names.

(1) Let ∆ be a finite dimensional algebra. We denote by

P∆ := C−,bdg (proj ∆)

the DG category of right bounded complexes of finitely generated projective ∆-modules
with bounded homology.

Then H0(P∆) = D∆, the bounded derived category of ∆-modules.
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(2) Let ∆ be a self-injective finite dimensional algebra (resp. an Iwanaga-Gorenstein finite
dimensional algebra). We denote by

A∆ := C∞,∅dg (proj ∆)

the DG category of acyclic complexes of finitely generated projective ∆-modules.
Then H0(A∆) = mod ∆ the stable module category of ∆ (resp. H0(A∆) = CM(∆)

the stable category of Cohen-Macaulay ∆-modules).

A.2. Functors. We now look at how certain functors between triangulated categories are re-
flected in the setup of pretriangulated DG categories. It turns out (see [Kel4, Section 9], in
particular Section 9.6) that we should consider the category rep (see Definition A.10 below).

For the rest of this appendix all undecorated tensor products are understood to be tensor
products over the base field k. Note that for two DG categories X and Y , the tensor product
X ⊗ Y is a DG category in a natural way (see for instance [Kel5, 2.3]).

Definition A.10 ([Kel4, Section 9.2]). Let X and Y be DG categories. We denote by
rep(X ,Y ). the full subcategory of D(X op ⊗ Y ) formed by the objects R, such for all X ∈X
the object R(X ⊗−) is isomorphic to a representable DG Y -module in D(Y ).

The motivating example for this construction is the following:

Example A.11 ([Kel4, Section 9.2]). Let F : X Y be a functor of DG categories. Then
F induces an object RF given by RF(X ⊗ Y ) = HomY (Y, FX) in DX op⊗Y . Since RF(X ⊗ −) is
represented by FX it lies in rep(X ,Y ).

The composition of functors in rep is given by the derived tensor product.

Example A.12. Let F : X Y and R ∈ rep(Y ,Z ) for three DG categories X ,Y ,Z . Then
the composition RFR ∈ rep(X ,Z ) is given by

(RFR)(X ⊗ Z) = R(FX ⊗ Z).

In particular, for R = RG, we have
RFRG = RFG.

A.3. Orbit categories. We give the following definition for the sake of completeness. However
we do not explain it here. The reader is advised to look up Section 5.1 in [Kel4].

Definition A.13 ([Kel4, Section 5.1]). Let X be a DG category, S : X X a DG functor
inducing an equivalence on H0(X ). Then the DG orbit category X /S has the same objects as
X , and

HomX /S(X1, X2)

= colim
[⊕
j>0

X (SjX1, X2)
S ⊕

j>0
X (SjX1, SX2)

S ⊕
j>0

X (SjX1, S
2X2)

S
· · ·
]
.

Definition A.14 ([Kel4, Section 5.1]). Let T = H0(X ) be an algebraic triangulated category,
S : X X a DG functor inducing an equivalence on T . Then the triangulated orbit category
of T modulo S is defined to be

H0(pretr(X /S)).

The instance of this definition we need here is the following. Here and in the sequel, for a
modules X over a finite dimensional algebra ∆ we denote by p∆(X) a projective resolution of
X.

Proposition A.15 (Keller, a special case of [Kel4, Theorem 7.1]). Let ∆ be a finite dimensional
algebra of finite global dimension, and n ∈ N. Then the functor

S := p∆⊗∆op(D∆)[−n]⊗∆ − : P∆ P∆

induces the autoequivalence Sn of D∆. The n-Amiot cluster category (defined in Construc-
tion 2.6) is equivalent to the triangulated orbit category

C n
∆ ≈ H0(pretr(P∆/S)).
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Before we can formulate the universal property of orbit categories in the full generality of
[Kel4] we need one more piece of notation.

Definition A.16 ([Kel4, Section 9.3]). Let X be a DG category and S : X X a cofibrant
DG module in rep(X ,X ), and let Y be a DG category. Then we denote by eff(X , S,Y ) (from
effaçable – removing the effect of S) the category with objects

(R, φ) with R ∈ rep(X ,Y ) and φ : R RSR an quasi-isomorphism of DGX op ⊗ Y -modules

and where the morphisms from (R, φ) to (R′, φ′) are obtained from morphisms f : R R′ of DG
X op ⊗ Y -modules, such that fφ′ = φ(Sf), by making quasi-isomorphisms invertible.

Similarly we can define the category effop(X , S,Y ) with objects (R, φ), where φ is a quasi-
isomorphism RSR R.

We are now ready to state Keller’s universal property.

Theorem A.17 (Keller [Kel4, Theorem 4 in Section 9.6]). Let X be a pretriangulated DG
category, and S : X X as in Definition A.13. Then for any pretriangulated DG category Y
there are equivalences

eff(X , S,Y )
≈

rep(pretr(X /S),Y )
≈

effop(X , S,Y ).

Remark A.18. Keller only states the first equivalence in of Theorem A.17. The other equiv-
alence follows from the first one for X op and Y op. (Note that it follows from the definition
that X op/S = (X /S)op, and from the universal property of the pretriangulated hull that
pretr(X op) = (pretr X )op.)

Applying this theorem to the setup of Proposition A.15 we obtain the following.

Corollary A.19. Let ∆ be a finite dimensional algebra of finite global dimension, and

S := p∆⊗∆op(D∆)[−n]⊗∆ − : P∆ P∆

as in Proposition A.15. Then for any pretriangulated DG category Y there are equivalences

eff(P∆, S,Y )
≈

rep(pretr(P∆/S),Y )
≈

effop(P∆, S,Y ).

A.4. Application to our setup. We now show the following instance of Keller’s general result.
This is what we apply in this paper.

Theorem A.20. Let ∆ be a finite dimensional algebra of finite global dimension, and let Π be
an Iwanaga-Gorenstein finite dimensional algebra. Let M ∈ DΠ⊗∆op, and

A = M ⊗L∆ − : D∆ DΠ

the triangle functor given by the derived tensor product. Assume there is a triangle

X A(D∆[−n]) A(∆) X[1]

in DΠ⊗∆op, such that X is mapped to perf Π by the forgetful functor DΠ⊗∆op DΠ.
Then there is a functor H : C n

∆ CM(Π) making the following diagram commutative.

D∆ DΠ

C n
∆ CM(Π)

A

H

Remark A.21. The same result also holds if we have a triangle “in the other direction”, that
is a triangle

X A(∆) A(D∆[−n]) X[1]

(and all other assumptions as in Theorem A.20 above).

For the proof we need the following observation.
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Proposition A.22 (Keller). Let Π be an Iwanaga-Gorenstein finite dimensional algebra. Setting

G(X ⊗ Y ) = HomΠ(Y,X) for X ∈PΠ and Y ∈ AΠ

we have G ∈ rep(PΠ,AΠ), and G induces the natural functor DΠ CM(Π).

Proof. Take aX ∈ AΠ such that t<i aX = t<iX for i� 0. Then we have a chain homomorphism
aX X, and a triangle

aX X C aX[1]

in the homotopy category of proj Π, with C a left bounded complex of finitely generated pro-
jective Π-modules.

Since Y is acyclic, so is HomΠ(Y,C). Thus the morphism

HomΠ(Y, aX) HomΠ(Y,X) = G(X ⊗ Y )

is a quasi-isomorphism. Thus G(X ⊗−) is representable (since it is represented by aX), and we
have G ∈ rep(PΠ,AΠ). �

Proof of Theorem A.20. Our first task is to translate the setup of the theorem to functors be-
tween the DG categories P∆, PΠ, and AΠ. We have the following functors and objects in the
respective rep-categories:

(1) The functor pΠ⊗∆op(M)⊗∆ − : P∆ PΠ induces A : D∆ DΠ. We denote by RA the
corresponding object in rep(P∆,PΠ).

(2) The functor S := p∆⊗∆op(D∆)[−n]⊗∆− : P∆ P∆ induces D∆[−n]⊗L∆− : D∆ D∆.
We have the corresponding object RS in rep(P∆,P∆).

(3) We denote by RX the object in rep(P∆,PΠ) corresponding to the functors pΠ⊗∆op(X)⊗∆

− : P∆ PΠ.

Now note that the triangle of the theorem induces a triangle

RX RSRA
φ

RA RX [1]

in rep(P∆,PΠ).
We denote by G ∈ rep(PΠ,AΠ) the object constructed in Proposition A.22 above. Then the

object RAG ∈ rep(P∆,AΠ) is a lift of the composition D∆
A

DΠ CM(Π). Multiplying the
above triangle with G we obtain a triangle

RXG RSRAG
φG

RAG RXG[1]

in rep(P∆,AΠ). We claim that φG is a quasi-isomorphism. To see this we only have to show
that RXG is acyclic. Indeed, for any P ∈P∆ and A ∈ AΠ we have

(RXG)(P ⊗A) = G(X ⊗∆ P ⊗A)

= HomΠ(A,X ⊗∆ P ),

and this is acyclic, since A is acyclic, and P ∈ perf ∆ and X ∈ perf Π imply X ⊗∆ P ∈ perf Π.
Consequently (RAG, φG) lies in effop(P∆, S,AΠ). By Corollary A.19 RAG is given by an object

in rep(pretr(P∆/S),AΠ), which induces the desired triangle functor H : C n
∆ CM(Π). �
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ciative algebras. Vol. 1, volume 65 of London Mathematical Society Student Texts. Cambridge University
Press, Cambridge, 2006. Techniques of representation theory.

[Aus1] Maurice Auslander. Coherent functors. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pages
189–231. Springer, New York, 1966.

[Aus2] Maurice Auslander. Representation theory of Artin algebras. I, II. Comm. Algebra, 1:177–268; ibid. 1
(1974), 269–310, 1974.

[Bel] Apostolos Beligiannis. Relative homology and higher cluster-tilting theory. in preparation.
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