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Abstract. The representation dimension is an invariant introduced by Aus-
lander to measure how far a representation infinite algebra is from being rep-
resentation finite. In 2005, Rouquier has given the first examples of algebras
of representation dimension greater than three. Here, we give the first gen-
eral method for establishing lower bounds for the representation dimension
of given algebras or families of algebras. The classes of algebras for which
we explicitly apply this method include (but do not restrict to) most of the
previous examples of algebras of large representation dimension, for some of
which the lower bound is improved to the correct value.

Introduction

The representation dimension of a finite dimensional algebra was introduced
by Auslander in his Queen Mary College notes [1]. Auslander has shown that
an algebra is of finite representation type if and only if its representation di-
mension is at most two. In general, he expected that the representation
dimension should measure how far an algebra is from being of finite repre-
sentation type.

In [14] (see also [13, 15] and the appendix here), Iyama showed that the
representation dimension of a finite dimensional algebra is always finite.

The first example of an algebra with representation dimension strictly
greater than three has been given by Rouquier in his article on the repre-
sentation dimension of exterior algebras [21]. In this paper he has shown
that it is possible to use the dimension of the derived category or, in the
case of self-injective algebras, of the stable module category, to obtain lower
bounds for the representation dimension. Using this, he has proven that the
representation dimension of the exterior algebra of an n-dimensional vector
space is n+ 1.

A second class of examples has been given by Krause and Kussin. In [17]
they have shown that the representation dimension of the algebras kQ/I,
with Q and I as in the case l = n of (⋆) on page 3, is at least n− 1.
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In [19] the author has shown that the representation dimension of an
elementary abelian group is at least its rank plus one.

Avramov and Iyengar [5], using techniques from [4], have announced that
the dimension of the stable derived category of a complete intersection local
ring R is at least the codimension of R minus one. As a corollary they
deduce that when in addition the ring is artin, its representation dimension is
at least the embedding dimension plus one. In particular, the representation
dimension of k[x1, ...., xn]/(x

c1
1 , ..., x

cn
n ) is at least n+1, generalizing the results

in [19].

Here we give a more general method to find lower bounds for the rep-
resentation dimension of classes of algebras. The main ingredients are as
follows:

We extend Rouquier’s definition of dimension of a triangulated category
to subcategories. This will allow us to find better lower bounds than by
looking only at the dimension of the derived category. In many examples we
will even be able to show that the representation dimension is strictly larger
than the dimension of the derived category. In particular we will be able to
improve Krause and Kussin’s bound to n + 1, which will then be shown to
be the precise value.

To find a lower bound to the representation dimension of a finite dimen-
sional k-algebra Λ, we have to look at an entire family of modules at once.
In this paper we will assume this family to come from one Λ ⊗k R-lattice
L, where R is a finitely generated commutative domain over k. That is, the
modules in the family we consider are the modules of the form L ⊗R X for
R-modules X of finite length, or, in other words, we look at the image of the
category of R-modules of finite length under the functor

L⊗R − : R-mod - Λ-Mod .

This functor is exact, and therefore also induces maps

(L⊗R −)Extd : ExtdR(X, Y ) - ExtdΛ(L⊗R X,L⊗R Y )

for any X, Y ∈ R-mod. With this notation, the main result presented here
is

Theorem (Corollary 4.9). Let L be a Λ ⊗k R-lattice. Assume the set

{p ∈ MaxSpecR | (L⊗R −)Extd(ExtdR(Rp-f.l., Rp-f.l.)) 6= 0}

is Zariski dense (here MaxSpecR denotes the set of maximal ideals of R,
and Rp-f.l. denotes the category of modules over the local ring Rp which have
finite length). Then

repdim Λ ≥ d+ 2.
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We actually prove a refinement of this theorem, which works with com-
plexes of injectives in the derived category (Theorem 1) and a version which
is easier to apply to examples (Theorem 2). It turns out that these theorems
provide useful lower bounds for the representation dimension in a variety of
situations, in many of which we will see that these lower bounds are equal
or very close to the correct number. This will be done by exploiting Iyama’s
result in the appendix.

We reprove Rouquier’s result on the representation dimension of the exte-
rior algebra of an n-dimensional vector space and generalize it to the quotient
of the exterior algebra modulo the l-th power of the radical (Example 6.1).
For l 6= n we can show that the lower bound we find for the representation
dimension is the precise value (Example A.6).

We prove that the representation dimension of k[x1, . . . , xn]/(x1, . . . , xn)
l

is at least min{l + 1, n + 1} (Example 6.2). For n ≥ l we are able to show
that this is the correct number (Example A.9). This result carries over (see
Section 7) to algebras of the form kQ/I, with

Q =
1
◦

x1
-

...
xn

-

2
◦

x1
-

...
xn

-

3
◦ · · ·

l−1
◦

x1
-

...
xn

-

l
◦ and (⋆)

I = (xn′xn′′ − xn′′xn′ | 1 ≤ n′, n′′ ≤ n)

(Example 7.3). This generalizes the family considered by Krause and Kussin.
In particular we improve the lower bound in their case (l = n) from n− 1 to
n+ 1, and show that this is the precise value (Example A.8).

One advantage of the theorem presented here is that it is quite well be-
haved under changes of the algebra. In most of the previous papers an
equivalence of the derived or stable module category to some other triangu-
lated category has been used. In that case one did not automatically get any
results for similar algebras. With the method presented here it will usually
be possible to move results to other algebras with a similar structure (Sec-
tion 6 and especially Section 7). Especially we will get lower bounds for the
representation dimension of algebras depending on parameters in k, not just
for discrete families (Examples 7.4, 7.4.1 and 7.5).

We will recall and fix some general notation for our algebras and module
categories in the first section.

In the second section we will give definitions of the representation dimen-
sion of a finite dimensional algebra (due to Auslander [1]) and the dimension
of a triangulated category (due to Rouquier [21, 22]). We will generalize
the latter to subcategories of triangulated categories. Finally we will prove
inequalities between these dimensions to be used in the rest of this paper.
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The third section will be used to study the vanishing of extensions over
polynomial rings or integral quotients of such. We need to do so to be able
to transfer these properties to the module categories of other algebras with
the help of tensor functors in Section 4.

The fourth section will be used to prove the main theorem (Theorem 1).
To do so, we will look at a pair of adjoint functors between the derived
categories of the module category we are interested in and the category of
finite length modules over the commutative ring we studied in Section 3.

In the fifth section we will further analyze one special case of the main
theorem. This will lead to Theorem 2, a reformulation of the main theorem
in this case, which looks more technical but is easier to apply to examples.

The sixth section will be used to show how the results apply to concrete
algebras. In particular we will generalize Rouquier’s result (Example 6.1) and
get a lower bound for the representation dimension of quotients of polynomial
rings (Theorem 3).

In the seventh section we will show that the assumptions of the main
theorem are preserved under certain coverings. Therefore we get results
on variations of the examples presented in Section 5. In particular we will
improve the result of Krause and Kussin (Example 7.3) and we get results on
larger families (families indexed by continuous parameters, not just discrete
families) of algebras (Examples 7.4 and 7.5).

The appendix contains results mainly due to Iyama. We apply the gen-
eral upper bound he established for the representation dimension of finite
dimensional algebras to the examples we considered in Sections 6 and 7. It
turns out that in most cases either the lower bound is equal to the upper
bound or the difference is very small.

Acknowledgements. I wish to thank my supervisor, Steffen Koenig, for
support, and for many helpful suggestions, and Osamu Iyama for providing
and for permission to include most of the ideas of the appendix and for
remarks on the rest of the paper.

1 Notation

Throughout this paper, k will denote a commutative (not necessarily alge-
braically closed) field. By a finite dimensional algebra we mean an associative
algebra Λ over k, which has finite dimension as a k-vector space. For any
associative ring Λ we denote by Λ-mod the category of finitely presented left
Λ-modules. In case Λ is a finite dimensional algebra, this is just the category
of Λ-modules of finite k-dimension. We denote the Jacobson radical of an



5 Representation dimension

algebra Λ by JΛ, or, if there is no chance of confusion, simply by J . The
global dimension of an algebra Λ will be denoted by gldΛ.

For M ∈ Λ-mod we denote by addM the full subcategory of Λ-mod con-
sisting of all direct summands of finite direct sums of copies of M . Moreover,
if Λ is a k-algebra, we denote by M∗ = Homk(M, k) ∈ Λop-mod the k-dual
of M .

We denote by Λ-proj and Λ-inj the categories of finitely presented projec-
tive and injective Λ-modules, respectively. Note that Λ-proj = add Λ, and,
if Λ is a finite dimensional algebra, Λ-inj = add Λ∗.

For an additive category A (in this paper typically one of Λ-mod, Λ-proj,
Λ-inj) we denote by K(A) the homotopy category of complexes in A. We
denote by Kb(A), K−(A), and K [a1,a2](A) the subcategories of complexes
which are bounded, bounded above (that is to the right), and concentrated in
degrees a1, . . . , a2, respectively. We denote by [1] the shift, that is the functor
moving any complex one step to the left, and replacing all differentials by
their negatives (see [16, Section 1]).

We denote by D(Λ-mod) the derived category of Λ-mod, that is the cat-
egory obtained from K(Λ-mod) by localizing at the subcategory of quasi-
isomorphisms. The variations Db, D−, D[a1,a2] and the shift [1] are defined
as they are in the case of the homotopy category.

In all the categories above we compose maps from left to right, that is fg
means first applying f and then g.

2 Dimensions

We need to introduce a few notions of dimension and to determine the rela-
tions between them. The representation dimension of an artin algebra has
been introduced by Auslander [1]. Rouquier has introduced the dimension
of a triangulated category [21, 22], and he [21, 22] and Krause and Kussin
[17] (see also Christensen [8]) have proven the inequalities involving these
dimensions presented here. The principal new results in this section are the
extension of Rouquier’s definition to subcategories of triangulated categories
(Definition 2.7), in particular to module categories, and the inequalities in-
volving this new notion of dimension (Lemmas 2.9 and 2.13).

We start by recalling the definition of representation dimension. Note
that while this is not the original definition Auslander has given in [1], it
follows from [1] that this definition is equivalent to his, except in case Λ is
semisimple.

2.1 Definition. Let Λ be a finite dimensional algebra over a field. The
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representation dimension of Λ is defined to be

repdim Λ = min{gldEndΛ(M) | M generates and cogenerates Λ-mod}.

The condition that the module M generates (cogenerates) Λ-mod means that
any module is a quotient (submodule) of a finite direct sum of copies of M ,
or, equivalently, that any indecomposable projective (injective) Λ-module is
isomorphic to a direct summand of M .

Auslander’s expectation was that the representation dimension should
measure how far an algebra is from having finite representation type. This
is motivated by the following result:

Theorem (Auslander [1]). Let Λ be a finite dimensional algebra. Then Λ is
of finite representation type if and only if repdim Λ ≤ 2.

2.2 Definition. Let Λ be a finite dimensional algebra and M ∈ Λ-mod.
Then

• the M-resolution dimension of a module X ∈ Λ-mod is defined to be

M -resol.dimX = min{n ∈ N | there is a complex

0 - Mn
- · · · - M0

- X - 0

with Mi ∈ addM such that the induced complex

0 - HomΛ(M,Mn) - · · · - HomΛ(M,X) - 0

is exact},

(here and in the following definitions we set min ∅ = ∞.)

• the M-resolution dimension of a subcategory X ⊆ Λ-mod is defined to
be

M-resol.dimX = sup{M-resol.dimX | X ∈ Ob X}.

2.3 Remark. If M is a generator then the complex

0 - Mn
- · · · - M0

- X - 0

in the definition above is an exact sequence.

This motivates the following weak version of 2.2:

2.4 Definition. Let Λ be a finite dimensional algebra and M ∈ Λ-mod.
Then
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• the weak M-resolution dimension of a module X ∈ Λ-mod is defined
to be

M -wresol.dimX = min{n ∈ N | there is an exact sequence

0 - Mn
- · · · - M0

- X - 0

with Mi ∈ addM},

• the weak M-resolution dimension of a subcategory X ⊆ Λ-mod is de-
fined to be

M-wresol.dimX = sup{M-wresol.dimX | X ∈ Ob X},

• the weak resolution dimension of a subcategory X ⊆ Λ-mod is defined
to be

wresol.dimX = min
M∈Λ-mod

M-wresol.dimX .

2.5 Lemma ([10, Lemma 2.1]). Let Λ be a finite dimensional, non-semisimple
algebra. Let M ∈ Λ-mod be generator and cogenerator. Then

gld EndΛ(M) = M-resol.dim(Λ-mod) + 2.

In particular

repdim Λ = min
M generator

and cogenerator

M-resol.dim(Λ-mod) + 2.

2.6 Remark. If M is a generator then Remark 2.3 implies that

M-wresol.dimX ≤ M-resol.dimX

and in particular

wresol.dim(Λ-mod) + 2 ≤ repdim Λ.

Let T be a triangulated category. We use ∗, ⋄ and 〈−〉n as in [21, 22]
(see also [6] and [7]). That is, for a subcategory I of T we denote by 〈I〉 the
full subcategory whose objects are direct summands of finite direct sums of
shifts of objects in I. For two subcategories I1 and I2, we denote by I1 ∗ I2

the full subcategory of extensions between the objects of I2 and those of I1.
That means that I1 ∗ I2 is the full subcategory of T with

Ob I1 ∗ I2 = {X ∈ Ob T | there is a distinguished triangle

X1
- X - X2

- X1[1] with Xi ∈ Ii}.
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Now let

I1 ⋄ I2 = 〈I1 ∗ I2〉 .

We set

〈I〉0 = 0,

〈I〉1 = 〈I〉, and inductively

〈I〉n+1 = 〈I〉n ⋄ 〈I〉.

2.7 Definition. Let T be a triangulated category, C ⊆ T a subcategory. We
define the dimension of C to be

dimT C = min{n ∈ N | ∃M ∈ Ob T : C ⊆ 〈M〉n+1}.

Note that for C = T this coincides with Rouquier’s definition [21, 22] of
dimension of a triangulated category.

We will omit the index T whenever there is no danger of confusion. In
particular for C = Λ-mod, interpreted as a subcategory of Db(Λ-mod) by
identifying modules with complexes concentrated in degree 0, we will write
dim Λ-mod instead of dimDb(Λ-mod) Λ-mod.

The following lemma is an immediate consequence of the definition:

2.8 Lemma. 1. Let C ⊆ D be subcategories of a triangulated category T .
Then dim C ≤ dimD.

2. Let F : T - T ′ be a triangulated functor. Let C ⊆ T . Then
dimT ′ F(C) ≤ dimT C.

2.9 Lemma. Let Λ be a finite dimensional algebra. Then for any X ⊆
Λ-mod

dimX ≤ wresol.dimX .

Proof. This is an immediate consequence of the fact that short exact se-
quences in Λ-mod are turned into triangles in Db(Λ-mod).

2.10 Lemma (a special case of [22, Lemma 7.35]). Let Λ be a finite dimen-
sional algebra. Let X = (X i)i∈Z be a complex of Λ-modules, such that all X i

have Loewy length at most n. Then X ∈ 〈Λ/JΛ〉n ⊆ Db(Λ-mod).
In particular

dimDb(Λ-mod) ≤ LL Λ − 1,

where LL denotes the Loewy length.



9 Representation dimension

2.11 Lemma (see [4, Theorem 5.5]). Let Λ be a finite dimensional alge-
bra. Let X ∈ Db(Λ-mod) be a complex such that all homology modules have
projective dimension at most n. Then X ∈ 〈Λ〉n+1 ⊆ Db(Λ-mod).

In particular

dimDb(Λ-mod) ≤ gldΛ.

2.12 Corollary ([21, Proposition 3.7] (separable case) and [17, Corollary 3.6]).
Let Λ be a finite dimensional algebra. Then

repdim Λ ≥ dimDb(Λ-mod).

Let us illustrate the most important dimensions and inequalities in the
following diagram, where a line means that the upper expression is larger
than or equal to the lower one.

repdim Λ gld Λ LLΛ − 1

wresol.dim Λ-mod

+2

dimDb(Λ-mod)

dim Λ-mod

(†)

Here we will get (by two) better lower bounds for the representation
dimension by using the left path in the above diagram rather than just the
inequality dimDb(Λ-mod) ≤ repdim Λ.

Note that, for Λ self-injective, Rouquier [21] also improved the lower
bound he obtained for the representation dimension from dimDb(Λ-mod) to
dim Λ-mod+2 by looking at the dimension of the stable module category
Λ-mod rather then at the derived category. The following lemma shows that
his improvement is included in ours in that case.

2.13 Lemma. Let Λ be a self-injective finite dimensional algebra. Then

dim Λ-mod ≥ dim Λ-mod .

Proof. The projection functor Db(Λ-mod) - Db(Λ-mod)/Λ-perf = Λ-mod
(see [20, Theorem 2.1]) maps Λ-mod densely to Λ-mod. Therefore, by
Lemma 2.8, dim Λ-mod ≤ dimDb(Λ-mod) Λ-mod.
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3 Vanishing of extensions over k[x1, . . . , xd]/I

We fix a field k and R = k[x1, . . . , xd]/I with I ⊆ k[x1, . . . , xd] a prime ideal.
We denote by R-f.l. the category of R-modules of finite length. One main
idea of this paper is to look at a family of objects in Db(Λ-mod) by taking a
complex G of Λ ⊗k R-lattices and looking at the image of the functor

G⊗R − : Db(R-f.l.) - Db(Λ-mod).

The aim of this section is to recall some properties of R-f.l., which will
then in the next section be used to study the image of G⊗R− in Db(Λ-mod).
We will prove Proposition 3.3, which says that for anyM ∈ D−(R-mod) there
is an open subset of blocks of R-f.l., such that for any block in this open
subset the homomorphisms from M to this block annihilate all extensions in
the block (the blocks of R-f.l. are indexed by maximal ideals of R, so the set
of blocks carries Zariski topology).

We denote by MaxSpecR the set of maximal ideals of R, with Zariski
topology. For p ∈ MaxSpecR we denote by Rp-f.l. the category of modules
of finite length over the localization of R at p. This is the full subcategory
of R-f.l. whose objects are all iterated extensions of the simple module R/p.
This yields a block decomposition

R-f.l. =
∐

p∈MaxSpecR

Rp-f.l.

That is R-f.l. decomposes as a coproduct of categories, in other words any
module of finite length is the direct sum of modules in the different Rp-f.l.,
and for p 6= q there are no non-zero morphisms from Rp-f.l. to Rq-f.l..

We will need the following result from commutative algebra:

3.1 Lemma. Let R be as above, and M a finitely generated R-module. Then
there is a non-empty open subset U ⊆ MaxSpecR such that Rp ⊗R M is a
free Rp-module for any p ∈ U .

Proof. By [18, Theorem 4.10(ii)] the set

Ũ = {p ∈ SpecR | Rp ⊗R M is free over Rp}

is open in SpecR. Since the local ring at the generic point R{0} is the quotient

field of R, we have {0} ∈ Ũ , so Ũ is non-empty. The set U = Ũ ∩MaxSpecR
is open in MaxSpecR, and to see that it is non-empty it suffices to prove
that MaxSpecR is dense in SpecR. Assume MaxSpecR ∩ Vr = ∅ for some
basic open set Vr = {p ∈ SpecR | r 6∈ p} with r ∈ R. Then r lies in all
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maximal ideals, hence in the Jacobson radical JR. However, since R is finitely
generated over k the Jacobson radical coincides with the nilradical (see [18,
Theorem 5.5]), and since R is a domain the nilradical is 0. Hence Vr = ∅,
showing that MaxSpecR is dense in SpecR.

3.2 Lemma. For any p ∈ SpecR the functor D(Rp-Mod) - D(R-Mod)
induced by R ⊂ - Rp is full and faithful.

Proof. The forgetful functor Rp-Mod - R-Mod has the left adjoint Rp⊗R

−. Since both functors are exact they also form an adjoint pair on the
corresponding derived categories. Hence for any X ∈ D(R-Mod) and Y ∈
D(Rp-Mod) we have

HomD(Rp -Mod)(Rp ⊗R X, Y ) = HomD(R-Mod)(X, Y ).

To complete the proof, note that Rp ⊗R X = X if X ∈ D(Rp-Mod).

3.3 Proposition. Let M ∈ D−(R-mod). There is a non-empty open set
U ⊂ MaxSpecR such that for any p ∈ U and any X1, X2 ∈ Rp-mod

HomD−(R-mod)(M,X1) HomD−(R-mod)(X1, X2[1]) = 0.

Proof. Since there are projective resolutions in R-mod we may assume that
M is represented by a right bounded complex of projectives. Then HomD−(R-mod)(M,X) =
HomK−(R-mod)(M,X) for any X ∈ K−(R-mod). Any morphism from M to
X1 factors through τ≥0M , where τ≥0M is the truncated complex as illus-
trated in the following diagram.

M : · · · - M−1 ∂
- M0 - M1 - · · ·

τ≥0M :
?

· · · - 0
?

- M0/ Im ∂

?
?

- M1

wwwww
- · · ·

Further, since X1 in an Rp-module, any map τ≥0M - X1 factors through
Rp⊗Rτ

≥0M . By Lemma 3.1 there is a non-empty open subset U ⊆ MaxSpecR
such that Rp ⊗R M

0/ Im ∂ is free (as Rp-module) for any p ∈ U . Then
the complex representing Rp ⊗R τ

≥0M has only projective terms, and hence
HomDb(Rp -mod)(Rp⊗Rτ

≥0M,X2[1]) = HomKb(Rp -mod)(Rp⊗Rτ
≥0M,X2[1]) = 0.

The claim of the proposition now follows from Lemma 3.2.
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4 The main theorem

In this section we will state and prove our main theorem. We keep R fixed
as in Section 3, and also fix a finite dimensional k-algebra Λ.

One ingredient is the following lemma:

4.1 Lemma (special case of [22, Lemma 4.11]). Let M ∈ Db(Λ-mod), and
d ∈ N. Assume there is a sequence of d morphisms

N0
f1
- N1

f2
- · · ·

fd
- Nd

in Db(Λ-mod), such that HomDb(Λ-mod)(M [i], Nj−1) · fj = 0 for all i ∈ Z and
j ∈ {1, . . . , d}. Assume further X ∈ Db(Λ-mod) such that HomDb(Λ-mod)(X,N0)·
f1 · · · fd 6= 0. Then X 6∈ 〈M〉d.

4.2 Definition. We call a morphism of complexes f : (Ai, ∂iA) - (Bi, ∂iB)
locally null-homotopic if for every i there are maps ri and si as indicated in
the following diagram, such that f i = ri∂i−1

B + ∂iAs
i.

· · · - Ai−1 ∂i−1
A - Ai

∂iA - Ai+1 - · · ·

· · · - Bi−1

f i−1

? ∂i−1
B -

ri

�

Bi

f i

? ∂iB -

si

�

Bi+1

f i+1

?

- · · ·

4.3 Lemma. Let M ∈ Db(Λ-mod). Assume there is a sequence of morphisms

N0
f1
- N1

f2
- · · ·

fd
- Nd

in Kb(Λ-inj), such that HomDb(Λ-mod)(M [i], Nj−1) · fj = 0 for all i ∈ Z and
j ∈ {1, . . . , d}. Assume further f1 · · · fd is not locally null-homotopic. Then
Λ-mod 6⊆ 〈M〉d.

Proof. Assume that f1 · · · fd is not locally null-homotopic in position p. Let

Z = Zp(N0) = Ker[(N0)
p ∂N0- (N0)

p+1]

be the p-cocycles of the complex N0. Then we have a natural map h :
Z[−p] - N0. We will show that hf1 · · · fd is not 0. Then the claim follows
from Lemma 4.1.
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Assume to the contrary that hf1 · · · fd = 0, that is, it is null-homotopic
as a map of complexes. That means there is a map r̃ as indicated in the
following diagram, such that r̃∂p−1

Nd
= ι(f1 · · · fd)

p.

Z[−p] Z

N0

h

?

· · · - (N0)
p−1 -

r̃

(N0)
p

ι

?

?

- (N0)
p+1 - · · ·

I-
-

π
--

Nd

f1 · · · fd

?

· · · - (Nd)
p−1

?

-

r

��

(Nd)
p

?

-

s

�

s̃

�

(Nd)
p+1

?

- · · ·

Since (Nd)
p−1 is injective r̃ extends to a map r as indicated in the diagram.

We have 0 = (r̃ − ιr)∂p−1
Nd

= ι((f1 · · · fd)
p − r∂p−1

Nd
), so (f1 · · · fd)

p − r∂p−1
Nd

factors through cok ι = π, say via s̃. Since (Nd)
p is injective s̃ extends to a

map s as indicated in the diagram. Thus f1 · · · fd is locally null-homotopic
in position p, contradicting the assumption.

Now assume we are in the following situation:

4.4 Setup. We have a functor F : Db(R-f.l.) - Db(Λ-mod) with the
following two properties:

1. for any i ∈ Z there are ai1, a
i
2 ∈ Z such that the functor F maps

R-f.l.[i] (= D[−i,−i](R-f.l.) = the full subcategory consisting of com-
plexes concentrated in degree −i) toK [ai

1,a
i
2](Λ-inj) (seen as subcategory

of Db(Λ-mod), and

2. the functor F admits a left adjoint F̃ : Db(Λ-mod) - D−(R-mod) in
the following sense: there is a natural isomorphism

HomDb(Λ-mod)(M, FX) ∼= HomD−(R-mod)(F̃M,X)

for M ∈ Db(Λ-mod) and X ∈ Db(R-f.l.).

Note that we do not assume F to be exact, to commute with shifts, or
even to be additive. However we will later choose F to be a tensor functor,
which has all these properties.
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4.5 Proposition. Let F : Db(R-f.l.) - Db(Λ-mod) be as described above,
d ∈ N.

(a) Assume

{p ∈ MaxSpecR | FHom(HomDb(R-mod)(Rp-f.l., Rp-f.l.[d])) 6= 0}

is dense. Here FHom denotes the map associated to F sending morphisms
between two R-modules to morphisms between their images. Then

dimDb(Λ-mod) ≥ d.

(b) Assume

{p ∈ MaxSpecR | FHom(HomDb(R-mod)(Rp-f.l., Rp-f.l.[d])) contains

at least one map of complexes which is not locally null-homotopic}

is dense (note that since F maps Rp-f.l. and Rp-f.l.[d] to Kb(Λ-inj) this
makes sense). Then

dim Λ-mod ≥ d,

and especially
repdim Λ ≥ d+ 2.

For the proof we will need the following observation:

4.6 Lemma. Let M,N ∈ R-f.l., and E ∈ ExtdR(M,N). Then E can be
represented by a d+ 1-term exact sequence of finite length R-modules.

Proof. We first show the following claim: Let N-
ι
- E be a monomorphism

of R-modules, where N has finite length and E is finitely generated. Then
there is a quotient Ẽ of E which has finite length, such that the induced map
N - Ẽ is still injective.

Let N ⊂ - I(N) be the injective envelope of N . It lifts to a map
E - I(N) as indicated in the following diagram.

N- - E

I(N)
?

∩

� �

�

Ẽ

?
?

We denote the image of the latter map by Ẽ. By [18, Theorem 18.4(v)] any
finitely generated submodule of the injective envelope of a simple R-module
has finite length. Hence, since N has finite length, also any finitely generated
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submodule of I(N) has finite length. It remains to see that the induced map

N - Ẽ is into. This follows from the fact that N ⊂ - I(N) factors
through this induced map.

Now we are ready to prove the claim of the lemma. We only have to show
that the terms of the exact sequence may be chosen to have finite length. In
case d = 1 this is automatic, so assume d > 1. Let

N- - Ed - Ed−1
- · · · - E1

-- M

be any representative of E. We may assume the Ei to be finitely generated,
because there is a projective resolution of M consisting of finitely generated
modules, and any d-extension is a pushout of any d-step projective resolu-
tion. Let Ẽd be any finite length quotient of Ed such that the composition
N- - Ed -- Ẽd is still mono (this is possible by our observation above).
Then E is also represented by the second line of the following diagram, where
Ẽd−1 denotes the pushout of square to its upper left.

N- - Ed - Ed−1
- · · · - E1

-- M

· · ·

N

wwwww
- - Ẽd

?
?

- Ẽd−1

?
?

- · · · - E1

wwwww
-- M

wwwww

So we can choose the first term to have finite length. Now the claim follows
by induction.

Proof of Proposition 4.5. We want to apply Lemmas 4.1 and 4.3 for (a) and
(b) respectively. Therefore let M ∈ Db(Λ-mod). Assume the homology of M
is concentrated in degrees b1, . . . , b2. We set a1 = min{ai1 | 0 ≤ i ≤ d − 1},
a2 = max{ai2 | 0 ≤ i ≤ d− 1}, with the aij as in Setup 4.4, and

M̂ =

b2−a1⊕

i=b1−a2

M [i].

That is we take the direct sum of all shifts ofM , excluding those which cannot
have any morphisms to objects in F(R-f.l.[i]) for any i ∈ {0, . . . , d− 1}. We
apply Proposition 3.3 to

d−1⊕

i=0

F̃(M̂)[−i].

This yields a non-empty open set U ⊂ MaxSpecR, such that for any p ∈ U ,
any W1,W2 ∈ Rp-f.l. and any i ∈ {0, . . . , d− 1} we have

HomD−(R-mod)(F̃(M̂),W1[i]) · HomD−(R-mod)(W1[i],W2[i+ 1]) = 0.
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Choose p in the intersection of U with the subset of MaxSpecR described in
the hypothesis of the proposition we are proving (that is, we intersect with
the set in the hypothesis for part (a) in order to prove (a), and with the set
in the hypothesis for part (b) in order to prove (b)). In both cases this is
possible by assumption, since U is non-empty and open.

Now choose an element f of HomDb(R-mod)(Rp-f.l., Rp-f.l.[d]) which is not
mapped to 0 by F. For the proof of (b) choose f such that Ff is not locally
null-homotopic. By Lemma 4.6 the morphism f can be decomposed into a
product

f = f1 · f2 · · · fd

with fi ∈ HomDb(R-mod)(Rp-f.l.[i−1], Rp-f.l.[i]), say fi : Wi−1[i−1] - Wi[i].
By assumption on p we have

HomD−(R-mod)(F̃(M̂),Wi−1[i− 1]) · fi = 0.

Now we apply F to fi and the adjunction isomorphism to the Hom-set. That
yields

HomDb(Λ-mod)(M̂, F(Wi−1[i− 1])) · F(fi) = 0.

By construction of M̂ this means

HomDb(Λ-mod)(M [j], F(Wi−1[i− 1])) · F(fi) = 0 ∀j ∈ Z.

Now apply Lemma 4.1 for the proof of (a) and Lemma 4.3 for the proof of
(b).

4.7 Definition. We define Λ ⊗k R-lat to be the full subcategory of Λ ⊗k

R-mod in which the objects are projective as R-modules. We denote by
Inj(Λ⊗kR-lat) the full subcategory of objects, which are injective with respect
to short exact sequences (that is, any short exact sequence which begins in
such an object splits).

Note that Inj(Λ ⊗k R-lat) contains all modules of the form I ⊗k R, with
I ∈ Λ-inj.

An object G ∈ Cb(Inj(Λ ⊗k R-lat)) gives rise to a functor

G⊗R − : Db(R-f.l.) - Db(Λ-mod).

(Since G consists of projective R-modules it is not necessary to derive this
functor in order to get a well defined functor between the derived categories.)

Theorem 1. Let G ∈ Cb(Inj(Λ ⊗k R-lat)) and d ∈ N.
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(a) Assume

{p ∈ MaxSpecR | (G⊗R −)Hom(HomDb(R-mod)(Rp-f.l., Rp-f.l.[d])) 6= 0}

is dense. Then
dimDb(Λ-mod) ≥ d.

(b) Assume

{p ∈ MaxSpecR | (G⊗R −)Hom(HomDb(R-mod)(Rp-f.l., Rp-f.l.[d]) contains

at least one map of complexes which is not locally null-homotopic}

is dense. Then
dim Λ-mod ≥ d,

and in particular
repdim Λ ≥ d+ 2.

Proof. Clearly we want to apply Proposition 4.5 with F = G ⊗R −. If G is
non-zero only in degrees c1, . . . , c2 then G⊗RR-f.l.[i] vanishes outside degrees
c1 − i, . . . , c2 − i, and hence the first assumption of 4.4 holds. It only remains
to show that F has a left adjoint.

Since G is finitely generated and projective over R it is isomorphic to
HomR(HomR(G,R), R) (note that applying HomR(−, R) just means applying
HomR(−, R) to every degree). Therefore we have

HomDb(Λ-mod)(M,G⊗R X)
∼= HomDb(Λ-mod)(M,HomR(HomR(G,R), R) ⊗R X)
∼= HomDb(Λ-mod)(M,HomR(HomR(G,R), X))

∼= HomD−(R-mod)(HomR(G,R) ⊗L
Λ M,X)

So HomR(G,R) ⊗L
Λ − is the desired adjoint.

4.8 Remark. Since Λ-inj ≈ Λ-proj we may in Theorem 1 alternatively
assume G ∈ Cb(Λ ⊗k R-proj).

Let us now assume that L ∈ Λ ⊗k R-lat. Then (L ⊗R −) is an exact
functor R-f.l. - Λ-mod. Therefore it also induces maps (L ⊗R −)Ext

between corresponding Ext-groups.

4.9 Corollary. Let L be a Λ ⊗ R-lattice, and let d ∈ N. Assume the set

{p ∈ MaxSpecR | (L⊗R −)Extd(ExtdR(Rp-f.l., Rp-f.l.)) 6= 0}
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is dense. Then
dim Λ-mod ≥ d,

and in particular
repdim Λ ≥ d+ 2.

Proof. We choose G to consist of the first d terms of an injective resolution
of L as Λ ⊗k R-lattice (naively truncated, so that it really is a complex of
injective lattices).

5 A practical version of the main theorem

In this section we will treat the following special case: We assume R =
k[x1, . . . , xd] and G is a complex of injective lattices of the form I⊗k R, such
that the part of the differential in R is a polynomial of degree one. This
setup will be used in the examples.

We denote by k the algebraic closure of k. The inclusion k[x1, . . . , xd] ⊂ - k[x1, . . . , xd]
induces a surjection

ζ : k
d

= MaxSpec k[x1, . . . , xd] -- MaxSpec k[x1, . . . , xd].

In particular the ζ-image of a dense subset is dense.

For (α1, . . . , αd) ∈ k
d

= MaxSpec k[x1, . . . , xd], we denote by k̂ = k[α1, . . . , αd]
the corresponding finite extension of k.

5.1 Corollary. Let R = k[x1, . . . , xd]. Assume G ∈ Cb(Inj(Λ ⊗k R-lat)) is
of the form

I0 ⊗k R
∂1
0+

Pd
i=1 ∂

1
i xi
- I1 ⊗k R

∂2
0+

Pd
i=1 ∂

2
i xi

- · · ·
∂d
0+

Pd
i=1 ∂

d
i xi
- Id ⊗k R,

with I i ∈ Λ-inj and ∂ji ∈ HomΛ(Ij−1, Ij). Here ∂j0 is short for ∂j0 ⊗k 1R, and
∂ji xi is short for ∂ji ⊗k [r - rxi]. Assume the set

{(α1, . . . , αd) ∈ k
d
| the map

I0 ⊗k k̂
∂1
0+

Pd
i=1 ∂

1
i αi
- I1 ⊗k k̂

Id−1 ⊗k k̂
∂d
0+

Pd
i=1 ∂

d
i αi
- Id ⊗k k̂

∂1
1 ···∂

d
d

?

is not null-homotopic}

is Zariski dense in k
d
. Then

dim Λ-mod ≥ d.
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Proof. We only need to show that we are in the situation of Theorem 1(b).
Assume (α1, . . . , αd) is in the set above. We consider the exact sequences

Er :
k̂[x1, . . . , xd](

xi−αi for
i∈{1,...,d}

) -
·(xr−αr)

-
k̂[x1, . . . , xd](
xi−αi for i6=r,

(xr−αr)2

) proj
--

k̂[x1, . . . , xd](
xi−αi for
i∈{1,...,d}

)

of R-modules. Tensoring Er with G over R we obtain the following short
exact sequence of complexes of Λ-modules.

I0 ⊗k k̂
∂1
0+

Pd
i=1 ∂

1
i αi
- I1 ⊗k k̂

∂2
0+

Pd
i=1 ∂

2
i αi

- · · ·
∂d
0+

Pd
i=1 ∂

d
i αi
- Id ⊗k k̂

· · ·

I0⊗k
bk ⊕

I0⊗k
bk(xr−αr)

( 0 1 )

?

A1

- I1⊗k
bk ⊕

I1⊗k
bk(xr−αr)

( 0 1 )

?

A2

- · · ·
Ad

- Id⊗k
bk ⊕

Id⊗k
bk(xr−αr)

( 0 1 )

?

· · ·

I0 ⊗k k̂

( 1
0 )

?

∂1
0+

Pd
i=1 ∂

1
i αi
- I1 ⊗k k̂

( 1
0 )

?

∂2
0+

Pd
i=1 ∂

2
i αi

- · · ·
∂d
0+

Pd
i=1 ∂

d
i αi
- Id ⊗k k̂

( 1
0 )

?

with Aj =

(
∂j0 +

∑d
i=1 ∂

j
i αi ∂jr

0 ∂j0 +
∑d

i=1 ∂
j
iαi

)
. The map in the homotopy

category corresponding to this extension is

I0 ⊗k k̂
∂1
0+

Pd
i=1 ∂

1
i αi
- I1 ⊗k k̂

∂2
0+

Pd
i=1 ∂

2
i αi

- · · ·

· · ·

I0 ⊗k k̂
−∂1

0−
Pd

i=1 ∂
1
i αi
- I1 ⊗k k̂

∂1
r

?

−∂2
0−

Pd
i=1 ∂

2
i αi
- I2 ⊗k k̂

∂2
r

?

−∂3
0−

Pd
i=1 ∂

3
i αi

- · · ·

Now we look at the composition (G⊗R E1) · · · (G⊗R Ed). By assumption it
is not locally null-homotopic. Therefore ζ(α1, . . . , αd) is in the set

{p ∈ MaxSpecR | (G⊗R −)Hom(HomDb(R-mod)(Rp-f.l., Rp-f.l.[d]) contains

at least one map of complexes which is not locally null-homotopic}.

Hence this set is dense, so the assumption of Theorem 1(b) is satisfied.

We now reformulate the hypothesis of Corollary 5.1 in a way which does
not require us to use Λ ⊗k R-lattices any more. We will only have to find a
finite set of morphisms between injective Λ-modules having certain proper-
ties.
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5.2 Proposition. For 0 ≤ j ≤ d let Ij ∈ Λ-inj and for 0 ≤ i ≤ d and
0 < j ≤ d let ∂ji ∈ HomΛ(Ij−1, Ij), such that

(1) ∀i, j : ∂ji ∂
j+1
i = 0 and

(2) ∀i1, i2, j : ∂ji1∂
j+1
i2

= −∂ji2∂
j+1
i1

.

Assume the set

{(α1, . . . , αd) ∈ k
d
|for k̂ = k[α1, . . . , αd] the map

I0 ⊗k k̂
∂1
0+

Pd
i=1 ∂

1
i αi
- I1 ⊗k k̂

Id−1 ⊗k k̂
∂d
0+

Pd
i=1 ∂

d
i αi
- Id ⊗k k̂

∂1
1 ···∂

d
d

?

is not null-homotopic}

is Zariski dense in k
d
. Then

dim Λ-mod ≥ d.

Proof. We apply Corollary 5.1 to the complex

I0 ⊗k R
∂1
0+

Pd
i=1 ∂

1
i xi
- I1 ⊗k R

∂2
0+

Pd
i=1 ∂

2
i xi

- · · ·
∂d
0+

Pd
i=1 ∂

d
i xi

- Id ⊗k R.

Assumptions (1) and (2) of the proposition ensure that this is indeed a com-
plex, that is that the composition of two consecutive morphisms vanishes.

5.3 Remark. Note that, in Proposition 5.2 above, we have to find out if
a morphism of complexes of Λ ⊗k k̂-modules is null-homotopic as a map of
complexes of Λ-modules. This seems to be a quite unnatural question. Next
we will see that for k̂ separable over k this simplifies to the question whether
the map is null-homotopic as a map of complexes of Λ ⊗k k̂-modules.

5.4 Lemma. Let k̂ be a finite separable extension of k. A map of complexes
of Λ ⊗k k̂-modules is (locally) null-homotopic as map of complexes of Λ-
modules if and only if it is (locally) null-homotopic as a map of complexes of

Λ ⊗k k̂-modules.

Proof. The “if”-part is clear.
For the converse let the complexes be (Ai) and (Bi), and the map be (f i).

Assume that there is a Λ-null-homotopy by maps hi : Ai - Bi−1.
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Since k̂ is separable over k the epimorphism k̂⊗k k̂
π
-- k̂ of k̂-k̂-bimodules

splits ([9, Corollary 69.8]). Let ι : k̂- - k̂ ⊗k k̂ be a morphism of k̂-k̂-

bimodules such that ιπ = 1. This induces maps of Λ ⊗k k̂ modules

Ai ⊗k k̂
1Ai ⊗bk π -

�

1Ai ⊗bk ι
Ai

and similar for Bi.
Now we replace the hi by the Λ ⊗k k̂-linear maps

h̃i : Ai ⊂

1Ai ⊗bk ι- Ai ⊗k k̂
h⊗k 1bk- Bi−1 ⊗k k̂

1Bi−1 ⊗bk π-- Bi−1.

Note that if g : X - Y is a Λ ⊗k k̂-linear map, then g(1Y ⊗bk ι) = (1X ⊗bk
ι)(g ⊗k 1bk) and (1X ⊗bk π)g = (g ⊗k 1bk)(1Y ⊗bk π). Applying this for the f i

and the differentials of the two complexes it is a straightforward calculation
to see that the h̃i also induce a null-homotopy.

The proof for locally null-homotopic is similar.

We denote by ksep the separable closure of k. Note that (ksep)d is always

dense in k
d
(If k is infinite then kd is already dense in k

d
, and otherwise ksep =

k). Then we obtain the following theorem directly from Proposition 5.2 and
Lemma 5.4.

Theorem 2. For 0 ≤ j ≤ d let Ij ∈ Λ-inj and for 0 ≤ i ≤ d and 0 < j ≤ d
let ∂ji ∈ HomΛ(Ij−1, Ij), such that

(1) ∀i, j : ∂ji ∂
j+1
i = 0 and

(2) ∀i1, i2, j : ∂ji1∂
j+1
i2

= −∂ji2∂
j+1
i1

.

Assume the set

{(α1, . . . , αd) ∈(ksep)d | for k̂ = k[α1, . . . , αd] the map

I0 ⊗k k̂
∂1
0+

Pd
i=1 ∂

1
i αi
- I1 ⊗k k̂

Id−1 ⊗k k̂
∂d
0+

Pd
i=1 ∂

d
i αi
- Id ⊗k k̂

∂1
1 ···∂

d
d

?

is not null-homotopic as map of complexes over Λ ⊗k k̂}

is Zariski dense in (ksep)d. Then

dim Λ-mod ≥ d.
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6 Applications

This section is devoted to showing how the results can be applied to some
interesting classes of algebras. We will reprove and generalize Rouquier’s re-
sult on the representation dimension of exterior algebras, and find a general
lower bound for the representation dimension of finite dimensional commu-
tative algebras. In the next section we will see that we automatically also get
lower bounds for coverings and certain variations of the algebras presented
in this section. In the appendix we will find upper bounds for the represen-
tation dimension of the algebras we look at in this and the next section. In
most cases it will turn out that we have actually identified the representation
dimension or that there is only a small number of possible values left.

The examples will consist of families of algebras indexed by l and n,
such that l is the Loewy length (we are not very strict about this, see the
parenthetical comment on the case l > n in Example 6.1) and n is the number
of generators.

As a first example, we consider the exterior algebra, which has been
treated by Rouquier [21]. We allow more generally to cut off certain powers
of the radical.

6.1 Example. Let Λl,n be the exterior algebra of an n-dimensional vector
space modulo the l-th power of the radical (l > 1, note that if l > n then the
actual value of l does not matter and the Loewy length is n+ 1). That is

Λl,n = k〈x1, . . . , xn〉 /(xn′xn′′ + xn′′xn′ , x2
n′, xn1

· · ·xnl
| 1 ≤ n′, n′′, ni ≤ n).

Then

min{l − 1, n− 1} ≤ dim Λl,n-mod ≤ dimDb(Λl,n-mod) ≤ min{l − 1, n},

and in particular
repdim Λl,n ≥ min{l + 1, n+ 1}.

Proof. We want to apply Theorem 2. Set d = min{l − 1, n − 1}. Take
I0 = · · · = Id = Λ∗

l,n and ∂ji the map induced by right multiplication by xi+1.
By definition they fulfill assumptions (1) and (2) of Theorem 2. So consider
the diagram

Λ∗
l,n ⊗k k̂

x1+
Pd

i=1 xi+1αi
- Λ∗

l,n ⊗k k̂

Λ∗
l,n ⊗k k̂

x1+
Pd

i=1 xi+1αi
- Λ∗

l,n ⊗k k̂

x2···xd+1

?
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for any (α1, . . . , αd) ∈ (ksep)d and k̂ = k[α1, . . . , αd]. The vertical map of
complexes is not null-homotopic. Therefore dim Λl,n-mod ≥ d. The other
inequalities are contained in diagram (†) following 2.12.

Now let us look at truncated polynomial rings.

6.2 Example. Let Σl,n = k[x1, . . . , xn]/(x1, . . . , xn)
l. That is the polynomial

ring in n variables modulo all monomials of degree l. Then

min{l − 1, n− 1} ≤ dim Σl,n-mod ≤ dimDb(Σl,n-mod) ≤ l − 1,

and in particular
repdim Σl,n ≥ min{l + 1, n+ 1}.

Proof. Set d = min{l − 1, n − 1}. Take Ij = (Σ∗
l,n)

(d

j), that is
(
d
j

)
copies of

the indecomposable injective module. We assume these copies to be indexed
by the subsets of {1, . . . , d} having exactly j elements, and write (Σ∗

l,n)
S with

S ⊆ {1, . . . , d} and |S| = j for the corresponding direct summand of Ij. We
define the maps ∂ji by giving their components between the direct summands.
For ∂j0 the component (Σ∗

l,n)
S - (Σ∗

l,n)
T is

{
0 if S 6⊂ T
(−1)|{s∈S|s<t}|xt if S ∪ {t} = T.

For i > 0 the component (Σ∗
l,n)

S - (Σ∗
l,n)

T of ∂ji is

{
(−1)|{s∈S|s<i}|xn if S ∪ {i} = T
0 else.

It is a straight forward calculation to verify that these maps fulfill assump-
tions (1) and (2) of Theorem 2. By induction on d′ with 0 ≤ d′ ≤ d one can
see that the map ∂1

1 · · ·∂
d′

d′ is given by its components

0 if S 6= {1, . . . , d′}
±xd

′

n if S = {1, . . . , d′}

}
: (Σ∗

l,n)
∅ - (Σ∗

l,n)
S.

Therefore we consider, for α ∈ (ksep)d and k̂ = k(α), the following vertical
map of complexes.

Σ∗
l,n ⊗k k̂

(x1+α1xn,...,xd+αdxn)
- (Σ∗

l,n)
d ⊗k k̂

(Σ∗
l,n)

d ⊗k k̂

0
BB@

x1+α1xn

−(x2+α2xn)

...
±(xd+αdxn)

1
CCA

- Σ∗
l,n ⊗k k̂

±xd
n

?
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Clearly it is never null-homotopic. Therefore Theorem 2 can be applied and
provides the lower bound for dim Σl,n-mod.

Note that the Loewy length of Σl,n is LL Σl,n = l. Then the other in-
equalities can be found in diagram (†) following 2.12.

For an ideal a ⊆ k[x1, . . . , xn] and a ∈ kn we say that a has a zero of order
l in a if a ⊆ (xi − ai | 1 ≤ i ≤ n)l. Note that for showing the lower bounds
for the three dimensions in Example 6.2 it was only necessary to factor out
an ideal which has a zero of order l in 0. Also we can move the zero to any
other point by changing the coordinates. Therefore we have shown

Theorem 3. Let a ⊆ k[x1, . . . , xn] be an ideal that has a zero of order l.
Then

min{l−1, n−1} ≤ dim k[x1, . . . , xn]/a-mod ≤ dimDb(k[x1, . . . , xn]/a-mod),

and in particular

repdim k[x1, . . . , xn]/a ≥ min{l + 1, n+ 1}.

Proof. Say the zero of order l is in a = (a1, . . . , an). Replacing xi = yi + ai
we may assume a = 0. Then the proof of Example 6.2 carries over word for

word (replacing Σ∗
l,n by

(
k[x1,...,xn]

a

)∗

).

6.3 Remark. Recall the following result due to Avramov and Iyengar [5]:

∀c1, . . . , cn > 1 : repdim k[x1, . . . , xn]/(x
c1
1 , . . . , x

cn
n ) ≥ n+ 1

It is worth noting that the result of Theorem 3 intersects their result, where
the intersection consists of the cases with c1, . . . , cn ≥ n.

7 Coverings of algebras

The aim of this section is to show that, under certain assumptions, the pre-
conditions of Theorem 1 are invariant under coverings. This result will allow
us to transfer the results on the local algebras in the previous section (Exam-
ples 6.1 and 6.2) to classes of algebras of finite global dimension. There are
many algebras which admit a covering by the same algebra of finite global
dimension. This will yield larger families (depending on parameters in k
rather than just the discrete parameters l, n) of algebras for which we can
find a lower bound for the representation dimension.

We assume Λ to be a finite dimensional graded algebra. Λ being graded
means that there is an abelian group A, such that Λ = ⊕a∈AΛa as k-vector
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space and Λa1 · Λa2 ⊆ Λa1+a2 . Note that the algebras presented in Section 6
as Examples 6.1 and 6.2 are Z graded by deg xi = 1.

A graded Λ-module is a Λ-moduleM with a k-vector space decomposition
M = ⊕a∈AMa such that Λa1 ·Ma2 ⊆ Ma1+a2 . Clearly Λ itself is a graded
Λ-module. If M is a graded Λ-modules and a ∈ A, then we denote by M〈a〉
the graded Λ-module with M〈a〉 = M as Λ-modules, but M〈a〉b = Ma+b.
For two graded Λ-modules M and N we denote by Homg

gr(M,N) the set of
graded homomorphisms of degree g, that is the homomorphisms which map
Ma to Na+g for all a ∈ A.

Now let V ⊆ A be a finite subset. We can define a finite dimensional
algebra ΛV by

ΛV = (End0
gr(⊕v∈V Λ〈v〉))op,

Note that Hom0
gr(Λ〈v〉 ,Λ〈w〉) = Homw−v

gr (Λ,Λ) = Λw−v. Therefore the alge-
bra ΛV is the matrix algebra

(Λw−v)v∈V
w∈V

The indecomposable projective ΛV -modules are in bijection to the pairs
(Q, v) with Q an indecomposable projective Λ-module and v ∈ V , and

HomΛV
(P(Q1,v1), P(Q2,v2)) = Homv2−v1

gr (Q1, Q2).

Sending P(Q,v) to Q gives rise to a faithful functor

ΛV -proj - Λ-proj

and therefore also to faithful functors

Cb(ΛV -proj) - Cb(Λ-proj), and

Cb(ΛV ⊗k R-proj) - Cb(Λ ⊗k R-proj),

which will all be denoted by C.
For G ∈ Cb(Λ ⊗k R-proj) we set

d(G) = max{d | the set

{p ∈ MaxSpecR | (G⊗R −)Hom(HomDb(R-mod)(Rp-f.l., Rp-f.l.[d])

contains at least one map of complexes which is not locally null-

homotopic}

is dense}.

Then Theorem 1(b) can be restated as follows:
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Theorem 1 (b). Assume G ∈ Λ ⊗k R-proj. Then dim Λ-mod ≥ d(G).

Our aim is to show that d(G) does not change under certain coverings.
Together with the formulation of Theorem 1(b) above this means that we
can often establish the same lower bounds for the dimension of the module
category of ΛV that we can show for the dimension of Λ-mod.

7.1 Proposition. Assume G ∈ Cb(ΛV ⊗k R-proj). Then d(CG) = d(G).

Proof. Tensoring with X ∈ R-f.l. commutes with C. Let X1, X2 ∈ R-f.l. and
ϕ : X1

- X2[d]. Clearly if the map G⊗R X1
- G⊗R X2[d] induced by

ϕ is locally null-homotopic, then so is its image under C.
The idea for the converse is, that all parts of a local null-homotopy which

do not respect the grading can be omitted.
More precisely, assume the map

⊕iP(Qi,vi)

(∂ij)ij
- ⊕iP(Ri,wi)

⊕iP(Si,xi)

(∂′ij)ij
- ⊕iP(Ti,yi)

(fij)ij

?

gets null-homotopic by applying C (here Qi, Ri, Si and Ti are indecomposable
projective Λ-modules and vi, wi, xi, yi ∈ V ). We want to show that the map
then is null-homotopic itself.

By assumption, there are maps rij : Qi
- Sj and sij : Ri

- Tj as
indicated in the following diagram

⊕iQi

(∂ij)ij
- ⊕iRi

⊕iSi
(∂′ij)ij

-

(rij)ij

�

⊕iTi

(fij)ij

?

(sij)ij

�

making f null-homotopic.
We can decompose the rij into rij =

∑
rgij with rgij ∈ Homg

gr(Qi, Sj) and
the sij into sij =

∑
sgij with sgij ∈ Homg

gr(Ri, Tj). New recall that the fij , ∂ij
and ∂′ij are graded homomorphisms. Using this fact, it is a straightforward

calculation to see that (r
xj−vi

ij )ij and (s
yj−wi

ij )ij also make f null-homotopic.

The claim now follows from the fact that the r
xj−vi

ij and s
yj−wi

ij are in the
image of C.
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We immediately get the following two new examples from Examples 6.1
and 6.2 (the upper bounds for the dimension of the derived category can be
read off directly from diagram (†) following 2.12):

7.2 Example (covering of Example 6.1). Let Λl,n be the exterior algebra of
an n-dimensional vector space modulo the l-th power of the radical, which
was treated in Example 6.1. Let Λ̃l,n = (Λl,n){1,...,l}, that is the covering with

respect to the subset {1, . . . , l} ⊂ Z. Then Λ̃l,n = kQ/I with

Q =
1
◦

x1
-

...
xn

-

2
◦

x1
-

...
xn

-

3
◦ · · ·

l−1
◦

x1
-

...
xn

-

l
◦ and

I = (xn′xn′′ + xn′′xn′ , x2
n′ | 1 ≤ n′, n′′ ≤ n).

Then

min{l − 1, n− 1} ≤ dim Λ̃l,n-mod ≤ dimDb(Λ̃l,n-mod) ≤ min{l − 1, n},

and in particular
repdim Λ̃l,n ≥ min{l + 1, n+ 1}.

7.3 Example (covering of Example 6.2). Let Σl,n be the truncated poly-

nomial ring as treated in Example 6.2. Let Σ̃l,n = (Σl,n){1,...,l}. Then

Σ̃l,n = kQ/I with

Q =
1
◦

x1
-

...
xn

-

2
◦

x1
-

...
xn

-

3
◦ · · ·

l−1
◦

x1
-

...
xn

-

l
◦ and

I = (xn′xn′′ − xn′′xn′ | 1 ≤ n′, n′′ ≤ n).

Then

min{l − 1, n− 1} ≤ dim Σ̃l,n-mod ≤ dimDb(Σ̃l,n-mod) ≤ min{l − 1, n},

and in particular
repdim Σ̃l,n ≥ min{l + 1, n+ 1}.

Note that for l = n this is the family of algebras studied by Krause and
Kussin [17]. Here we have improved their lower bound for the representation
dimension by two.

There can be many graded algebras which have the same covering. We
also get the following connection between them:
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Let Λ be anA-graded finite dimensional algebra, and let α : A - Autgr Λ
be a homomorphism of groups. Then we can define a finite dimensional al-
gebra Λα by

Λα ∼= Λ as k-vector spaces, and

λ1 ·α λ2 = λ
α(deg λ2)
1 · λ2.

It is straight forward to verify that Λα is an algebra and that Λα
V
∼= ΛV

for any V ⊆ A.
In our examples the algebras are Z-graded, and a group homomorphism

α : Z - Autgr Λ is determined by α(1). Further note that in Examples 6.1
and 6.2 any automorphism A of the vector space kx1 ⊕ · · · ⊕ kxn extends
uniquely to a graded automorphism of Λl,n. Therefore we get the following
results:

7.4 Example (from Examples 6.1 and 7.2). Let A = (aij) be an invertible
n× n-matrix over k. Let ΛA

l,n be the algebra

ΛA
l,n = k〈x1, . . . , xn〉 /(

∑

i

an′ixn′′xi +
∑

i

an′′ixn′xi 1 ≤ n′, n′′ ≤ n,

∑

i

an′ixn′xi 1 ≤ n′ ≤ n,

xn1
· · ·xnl

1 ≤ ni ≤ n).

Then

min{l − 1, n− 1} ≤ dim ΛA
l,n-mod ≤ dimDb(ΛA

l,n-mod) ≤ min{l − 1, n},

and in particular
repdim ΛA

l,n ≥ min{l + 1, n+ 1}.

7.4.1 Subexample. In Example 7.4 above, let n = 3, l = 4 and A =
(
st
t

1

)

with s, t ∈ k \ {0}. Then we find

repdim
(
k〈x, y, z〉 /(x2, y2, z2, xy + syx, xz + stzx, yz + tzy)

)
≥ 4.

7.5 Example (from Examples 6.2 and 7.3). Let A = (aij) be an invertible
n× n-matrix over k. Let ΣA

l,n be the algebra

ΣA
l,n = k〈x1, . . . , xn〉 /(

∑

i

an′ixn′′xi −
∑

i

an′′ixn′xi 1 ≤ n′, n′′ ≤ n

xn1
· · ·xnl

1 ≤ ni ≤ n).
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Then

min{l − 1, n− 1} ≤ dim ΣA
l,n-mod ≤ dimDb(ΣA

l,n-mod) ≤ l − 1,

and in particular
repdim ΣA

l,n ≥ min{l + 1, n+ 1}.

Appendix: Comparison with Iyama’s upper bound for
the representation dimension

The results presented here are based on the following theorem of Iyama.
The application of his result to the examples was suggested by Iyama, who
worked out in detail the upper bound for the representation dimension of
the algebra considered by Krause and Kussin presented here as Example A.8
(private communication [12]).
Theorem 4 (Iyama [13, Theorem 2.2.2 and Theorem 2.5.1]). Let Λ be a finite
dimensional algebra. Let M = M0 ∈ Λ-mod and Mi+1 = Mi · JEndΛ(Mi) (re-
member that JEndΛ(Mi) denotes the Jacobson radical of the algebra EndΛ(Mi)).
Assume Mm = 0. Then

gld EndΛ(
⊕

i

Mi) ≤ m.

In particular, for M = Λ ⊕ Λ∗,

repdim Λ ≤ m.

Here we only consider the case M = Λ⊕Λ∗. We will show that the upper
bound for the representation dimension provided by Iyama’s theorem coin-
cides with the lower bound we found for some of the algebras we considered.

The following corollary and its proof are a slight extension of a result
shown by Iyama in a private letter [12].

A.1 Corollary. Let Λ be a finite dimensional algebra with l simple modules
S1, . . . , Sl (up to isomorphism), such that Ext1

Λ(Sv, Sw) = 0 whenever v 6=
w − 1. Denote by Iv the injective module with socle Sv. Assume

(1) EndΛ J
i
ΛP is semisimple for any i and any indecomposable projective

module P .

(2) there is 1 ≤ l0 ≤ l such that

(a) Iv is projective for all v > l0, and
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(b) all composition factors of SocΛ are among the simple modules
corresponding to vertices l0, . . . , l.

Then

repdim Λ ≤ max{LLΛ,max{LL Iv + 1 | Iv not projective}}.

A.2 Remark. The condition on the extensions between simple Λ-modules
just means that the (valued) quiver of Λ is of the form

◦
1

(a1,b1)
- ◦

2

(a2,b2)
- · · ·

(al−1,bl−1)
- ◦

l

for arbitrary ai, bi ∈ N.

Proof. Set V = {v ∈ {1, . . . , l} | Iv not projective}. We may assume that
l0 ∈ V . We apply Iyama’s Theorem with M0 = Λ ⊕

⊕
v∈V Iv. We will show

thatMi = J iΛ⊕
⊕

v∈V I
i
v, for submodules I iv ⊆ Iv with LL I iv ≤ maxv∈V LL Iv+

1 − i.
Clearly the construction in Iyama’s Theorem respects the direct sum de-

composition of M0.
We first look at morphisms to the submodules of the indecomposable

injective non-projective modules.
Let v ∈ V and ϕ ∈ Hom(J iΛ, I

i
v). Since Iv is injective ϕ extends to a map

Λ - Iv as indicated in the following diagram.

J iΛ
⊂ - Λ

I iv

ϕ
?

⊂ - Iv
?

Therefore the image of ϕ is contained in J iΛIv. Conversely let ψ : Λn -- Iv
be a projective cover. Since Iv is not projective this is in the radical of Λ-mod,
so I1

v = Iv. Since embedding the radical is in the radical of Λ-mod so is the
composition with the restriction of ψ to some radical power

(J iΛ)n
ψ
-- J iΛIv

⊂ - J i−1
Λ Iv.

Therefore one can see, by induction over i, that J iΛ ·RadΛ-mod(J
i
Λ, I

i
v) = J iΛIv

and J i−1
Λ Iv ⊆ I iv. In particular we obtain I il0 = J i−1

Λ Il0 , since there are no
maps from the other I iv to I il0 .

Now let v, w ∈ V with v 6= w. Any map ϕ : I iv - I iw has the socle of
I iv in its kernel. Therefore the length of the image is at most the length of I iv
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minus one. By induction on i one obtains LL I iv ≤ maxw∈V LL Iw + 1 − i as
claimed above.

Now we want to consider maps to the projective modules.
The composition of a projective cover with embedding of the radical

Λr -- JΛ
⊂ - Λ restricts to maps (J iΛ)r -- J i+1

Λ
⊂ - J iΛ. These

are in the radical of End J iΛ since the second map is in the radical of Λ-mod.
Therefore, together with Assumption (1), we get J iΛ · JEndΛ(Ji

Λ
) = J i+1

Λ .

For v < l0 we have HomΛ(I iv, J
i
Λ) = 0, since I iv and SocJ iΛ do not have

any common composition factors. By looking at the composition factors, we
can also see that any non-zero element of HomΛ(I il0, J

i
Λ) is a monomorphism.

Now assume such a monomorphism exists. Remember that I il0 = J i−1
Λ Il0 .

Therefore the simple module corresponding to vertex l0−(LL Il0−1)+(i−1) =
l0 − LL Il0 + i is a composition factor of I il0 . So it also is a composition
factor of J iΛ. Let w be a vertex such that it is a composition factor of
J iΛPw, where Pw is the projective module corresponding to vertex w. Then
l0 − LL Il0 + i ≥ w + i, so l0 − w ≥ LL Il0 . But if the simple module
corresponding to l0 is a composition factor of Pw then the simple module
corresponding to w is a composition factor of Il0 . Therefore LL Il0 ≥ l0−w+1.
A contradiction. Therefore HomΛ(I il0 , J

i
Λ) = 0.

Putting everything together we find that Mi has the structure claimed
above. In particular Mmax{LL Λ,max{LL Iv+1|Iv not projective}} = 0, so Iyama’s The-
orem provides the claim of the corollary.

A.3 Corollary. Let Λ be a local finite dimensional algebra. Assume

(1) J iΛ · JEndΛ(Ji
Λ
) ⊆ J i+1

Λ for any i,

(2) the socle and radical series coincide for Λ and for Λ∗, and

(3) any map Soc3 Λ∗ - Λ has semisimple image.

Then repdim Λ ≤ LL Λ + 1.

Proof. We may assume that Λ is not self-injective (otherwise it is semisimple
by Assumption (3)). We set M0 = Λ⊕ Λ∗ and claim that Mi = J iΛ ⊕ J i−1

Λ Λ∗

for i ≥ 1.
As in the proof of Corollary A.1 we can see that

J iΛΛ∗ ⊆ (J iΛ ⊕ J i−1
Λ Λ∗) · RadΛ-mod(J

i
Λ ⊕ J i−1

Λ Λ∗, J i−1
Λ Λ∗) ⊆ SocLL Λ−i Λ∗.

Since both sides coincide by Assumption (2) we have equality.
The proof of J iΛ · JEndΛ(Ji

Λ
) = J i+1

Λ Λ is also identical to the proof of this
equality in the case of Corollary A.1.
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It remains to show that J i−1
Λ Λ∗ · HomΛ(J i−1

Λ Λ∗, J iΛ) ⊆ J i+1
Λ Λ. Unfortu-

nately this will clearly fail for i = LL Λ − 1. But in that case the image of
any morphism to J iΛ has semisimple image (since the module is semisimple),
and the simple module is a direct summand of Mi+1 anyway, so it still agrees
with our claim above. Now assume i < LLΛ−1. Let ϕ ∈ HomΛ(J i−1

Λ Λ∗, J iΛ).
We consider the following composition

Soc3 Λ∗ ⊂ - J i−1
Λ Λ∗ ϕ

- J iΛ
⊂ - Λ.

By Assumption (3) this composition has semisimple image, so ϕ factors
through J i−1

Λ Λ∗ -- J i−1
Λ Λ∗/ Soc2 Λ∗. Therefore the image has Loewy length

at most LL Λ−(i−1)−2 = LL Λ− i−1, so it is contained in SocLL Λ−i−1 Λ =
J i+1

Λ Λ.

A.4 Remark / Corollary. Auslander [2] has shown that the representation
dimension of a self-injective algebra is bounded above by its Loewy length.
This result also follows from Iyama’s Theorem (similar to and easier than
Corollary A.3).

Application to the examples: Let us start by checking Assumption (1)
of Corollary A.3 for the exterior algebra.

A.5 Lemma. Let ΛN = k〈x1, . . . , xn〉 /(xn′′xn′ + xn′xn′′ , x2
n′) be the exterior

algebra. Let 0 ≤ i ≤ j − 2 ≤ n− 1. Then

EndΛn
J iΛn/J

jΛn = k ⊕ HomΛn
(J iΛn/J

jΛn, J
i+1Λn/J

jΛn)ι

where ι is the natural embedding.

Proof. Since we are looking at a graded module the endomorphism ring is also
graded. Therefore we only have to verify that all degree 0 endomorphisms
are multiplication by a scalar.

If i = 0 or j = n + 1 this is true, since the endomorphisms induce
endomorphisms of the simple head (i = 0) or simple socle (j = n + 1).
Therefore we may exclude these cases in the next step.

Assume 1 ≤ i and j ≤ n. Let ϕ : J iΛn/J
jΛn

- J iΛn/J
jΛn be a degree

0 morphism. We want to show now that ϕ maps xn′J i−1Λn/J
jΛn to itself

for any n′. Let p ∈ J i−1Λn be an element of degree i− 1. Then

xn′′ϕ(xn′p+ J jΛn) = ϕ(xn′′xn′p+ J jΛn) = −xn′ϕ(xn′′p+ J jΛn)

∈ xn′ · J iΛn/J
jΛn.
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Let

ϕ(xn′p+ J jΛn) =
∑

n1<n2<···<ni

αn1,...,ni
xn1

· · ·xni
.

Then

xn′′ϕ(xn′p+ J jΛn) =
∑

n1<n2<···<ni

n1 6=n′′,··· ,ni 6=n
′′

αn1,...,ni
xn′′xn1

· · ·xni
.

Therefore each monomial with a nonzero coefficient in ϕ(xn′p+J jΛn) contains
at least one of xn′ and xn′′ . Since this works for any n′′ 6= n′ each such
monomial contains xn′ or all other xn′′ . The latter case cannot occur, since
i < n− 1, so ϕ maps xn′J i−1Λn/J

jΛn to itself as claimed above.
Now we show by induction on i and simultaneously for all n > i that any

degree 0 morphism ϕ : J iΛn/J
jΛn

- J iΛn/J
jΛn is multiplication by a

scalar.
For i = 0 this is clear, so assume i > 0. Then we know that ϕ maps

xn′ · J i−1Λn/J
jΛn to itself. Now xn′ · J i−1Λn/J

jΛn = J i−1Λn−1/J
j−1Λn−1,

where the Λn−1 is to be interpreted as the exterior algebra on the vector
space generated by xn′′ with n′′ 6= n′. Now inductively ϕ|xn′ ·Ji−1Λn/JjΛn

is
multiplication by some scalar αn′, and the αn′ all coincide since the xn′ ·
J i−1Λn/J

jΛn have pairwise non-trivial intersection.
Therefore our morphism is multiplication by a scalar, and the claim of

the lemma follows.

A.6 Example. Let Λl,n be the family of algebras from Example 6.1. That is
Λl,n = k〈x1, . . . , xn〉 /(xn′′xn′ + xn′xn′′ , x2

n′, xn1
· · ·xnl

). Assume l 6= n. Then

repdim Λl,n ≤ min{l + 1, n+ 1}.

Together with Example 6.1 this implies that we have equality here and
dim Λl,n-mod = min{l − 1, n− 1}.

Proof. In case l ≥ n + 1 the algebra is self-injective and the claim follows
from Remark A.4. Otherwise we would like to apply Corollary A.3. We have
verified Assumption (1) in Lemma A.5, and Assumption (2) is obvious. To
verify Assumption (3) let ϕ : Soc3 Λ∗

l,n
- Λl,n. The monomials of the form

xn1
· · ·xni

with n1 < · · · < ni and i < l form a basis of Λl,n. We consider the
dual basis of Λ∗

l,n. Then

Soc3 Λ∗
l,n =

⊕

m such a
monomial of
degree ≤2

km∗.
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Now note that for n′ < n′′ we have xr(xn′xn′′)∗ = 0 for all r 6∈ {n′, n′′}.
Therefore all these xr have to operate as zero on ϕ((xn′xn′′)∗). It follows
that ϕ((xn′xn′′)∗) ∈ Jn−2Λl,n + Soc Λl,n. Since Soc Λl,n = J l−1Λl,n, Claim (3)
follows for n− 2 ≥ l − 1, that is l ≤ n− 1.

Unfortunately, Iyama’s Theorem does not give us the desired bound for
l = n.

A.7 Example. Let Λ̃l,n be the family of algebras from Example 7.2, that is

Λ̃l,n = kQ/I with

Q =
1
◦

x1
-

...
xn

-

2
◦

x1
-

...
xn

-

3
◦ · · ·

l−1
◦

x1
-

...
xn

-

l
◦ and

I = (xn′′xn′ + xn′xn′′ , x2
n′).

Then
repdim Λ̃l,n ≤ min{l + 1, n+ 1}.

Together with Example 7.2 this implies that we have equality here and
dim Λ̃l,n-mod = min{l − 1, n− 1}.

Proof. This time we want to apply Corollary A.1. One can see that Assump-
tion (1) is satisfied as in the proof of Lemma A.5, except that we do not have
to restrict to degree 0 morphisms (since there are no morphisms of non-zero
degree). If we choose l0 = min{l, n} then Assumption (2) holds.

A.8 Example (shown by Iyama). Let Σ̃l,n be the family of algebras from

Example 7.3, that is Σ̃l,n = kQ/I with

Q =
1
◦

x1
-

...
xn

-

2
◦

x1
-

...
xn

-

3
◦ · · ·

l−1
◦

x1
-

...
xn

-

L
◦ and

I = (xn′′xn′ − xn′xn′′).

Then
repdim Σ̃l,n ≤ l + 1.

In particular for n ≥ l we have equality, by Example 7.3.

Proof. We apply Corollary A.1. Assumption (1) can again be seen similarly
to the proof of Lemma A.5, by combining the changes sketched in the proofs
of Examples A.7 and A.9. Assumption (2) clearly holds for l0 = l.
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A.9 Example. Let Σl,n be the family of algebras from Example 6.2. That
is Σl,n = k[x1, . . . , xn]/(x1, . . . , xn)

l. Then

repdim Σl,n ≤ l + 1.

In particular for n ≥ l we have equality by Example 6.2.

Proof. We want to apply Corollary A.3. We can see that Assumption (1)
holds in a similar way to the proof of Lemma A.5. The differences are
that we cannot and don’t have to exclude the case j = l − 1, and that
xn·J

i−1Σl,n/J
jΣl,n = J i−1Σl,n/J

j−1Σl,n, so we do not need to look at different
n simultaneously. Assumption (2) is obvious and Assumption (3) can be seen
as in Example A.6.

A.10 Remark. The case n = 1 suggests that in the last two examples the
correct number for the representation dimension could be min{l + 1, n+ 1}.
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