
REPRESENTATION DIMENSION OF QUASI-TILTED
ALGEBRAS

STEFFEN OPPERMANN

Abstract. It will be shown that any quasi-tilted algebra over an algebraically
closed field has representation dimension at most three, confirming a conjecture
of Assem, Platzeck and Trepode.

1. Introduction

The representation dimension of an artin algebra has been introduced by Aus-
lander [2]. It provides a homological criterion for finite representation type. More
precisely, Auslander has shown that an artin algebra is representation finite (that
is, has only finitely many indecomposable modules up to isomorphism) if and only
if its representation dimension is at most two. He expected that for a representa-
tion infinite algebra its representation dimension should be a measure of how far
the algebra is from being of finite representation type.

However it is not reasonable to expect the representation dimension to measure
the size of the module category in the sense of “number of modules”. Auslander
has shown that any hereditary artin algebra has representation dimension at most
three, but there are examples of quotients of such algebras with arbitrarily large
representation dimension (see [15, 21]). We believe that representation dimension
measures how complicated the homological algebra of the module category is. One
implication is supported by results of Bergh [5] and the author [21] giving lower
bounds for the representation dimension in terms of certain homological behaviour
of the module categories. The result presented here provides support for the other
implication:

From a homological point of view, the easiest (non-trivial) categories are hered-
itary, such as representations of quivers or certain categories of coherent sheaves,
for example on a projective line. The module categories most closely related to
hereditary categories are those of quasi-tilted algebras. These algebras, introduced
by Happel, Reiten, and Smalø [13], are defined to be the endomorphism rings of
tilting objects in hereditary categories. In particular quasi-tilted algebras are de-
rived equivalent to hereditary categories. Happel, Reiten, and Smalø have shown
that quasi-tilted algebras also admit a simple “internal” homological characteri-
zation called almost hereditary (see [13, Chapter II], in particular Theorem 2.3).

Happel [11] has shown that the class of (connected) quasi-tilted algebras can
be subdivided into those quasi-tilted algebras which are derived equivalent to
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2 Quasi-tilted algebras

hereditary algebras, and those which are derived equivalent to weighted projective
lines. In particular any quasi-tilted algebra which is not tilted is derived equivalent
to a weighted projective line (see Section 2).

For the special case of tilted algebras (that is, quasi-tilted algebras where the
hereditary category is representations of a quiver) Assem, Platzeck, and Trepode
[1] have proven that they always have representation dimension at most three.
This, and the observations above, led them to the conjecture that any quasi-tilted
algebra should have representation dimension at most three. Their proof uses the
existence of projective or injective objects in the hereditary category, and hence
cannot be generalized to the case where this category is coherent sheaves on a
weighted projective line.

Weighted projective lines have been introduced by Geigle and Lenzing [9]. From
an algebraic geometric point of view one might think of weighted projective lines
as projective lines, where in certain (finitely many) points the local ring has been
replaced by a semi-local ring. Geigle and Lenzing have shown that the cate-
gories of coherent sheaves over a weighted projective line behave in many ways
like the categories of coherent sheaves over a smooth projective line (see [9] or
Theorem 2.15).

Quasi-tilted algebras derived equivalent to weighted projective lines have been
widely studied (for instance in [6, 7, 25]). In particular, the representation theory
of canonical algebras (the most prominent family of such quasi-tilted algebras –
introduced by Ringel [22] before weighted projective lines or quasi-tilted algebras
had first appeared), and more generally concealed canonical algebras (introduced
by Lenzing and Meltzer [16]) has been thoroughly investigated (see [17, 18, 19,
22, 23]). However, even for the canonical algebras the value of the representation
dimension has so far not been known. We can now fill this gap:

1.1. Theorem. Let Λ be a quasi-tilted algebra over an algebraically closed field.
Then we have exactly one of the following:

• Λ is semi-simple,
• the representation dimension of Λ is two, and Λ is representation finite

and tilted, or
• the representation dimension of Λ is three, and Λ is representation infinite.

In particular, any quasi-tilted non-tilted algebra has representation dimension three.

The strategy of the proof is as follows:
Assume Λ is a connected quasi-tilted algebra which is not tilted. It follows

from [11] that Λ is tilted from a hereditary category H which is derived equivalent
to coherent sheaves on a weighted projective line. Lenzing and Skowroński [18]
classified these categories H. In Section 2 we recall this result, and use it to show
that we may assume H to have a very specific shape (see Theorem 2.17).

The category of Λ-modules can be seen as sitting inside two consecutive copies
of H (see Theorem 2.13). In their proof that the representation dimension of tilted
algebras is at most three, Assem, Platzeck, and Trepode used the fact that in their
case (where instead of from H one tilts from a module category of a hereditary
algebra H) one can separate the two parts of the module category of Λ (in the
different copies of modH) by a complete slice, which comes from projective or
injective H-modules. Unfortunately, in our case H does not have any projective
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or injective objects, and a complete slice as in the tilted case does not exist.
However we still have some control over the border between the two copies: It
consist of a P1

k-family of tubes.
The crucial idea here is to choose a wing inside each non-homogeneous tube

(see Construction 3.6). While this is not as good as the complete slices in the
tilted case (there any map from the first to the second part of the module cate-
gory factors through the complete slice) it still gives us some control: We show
in Proposition 4.8 that the wings (in some sense) force vector bundles over the
weighted projective line into a much smaller and better understood subcategory,
which is equivalent to the category of vector bundles over the projective line P1

k.
We then show that, starting with a module in the second copy of H and approx-

imating with injective modules and elements of the wings, we can find restrictions
to which line bundles over P1

k will occur in the cone (Proposition 6.8). This will
help us show that there is a finite collection of line bundles over P1

k (see Con-
struction 5.1), which is enough to make up for the non-perfect border between the
copies of H.

2. Notation and Background

Throughout this paper we assume k to be an algebraically closed field. All
categories occurring are assumed to be k-categories with finite dimensional Hom-
spaces.

The main examples of such categories occurring in this paper are the category
of modules over a finite dimensional algebra Λ, denoted by mod Λ, the category of
coherent sheaves over a weighted projective line X, denoted by coh X (as introduced
by Geigle and Lenzing [9], see also the brief summary of properties in Theorem 2.15
below), and their bounded derived categories Db(mod Λ) and Db(coh X).

For an object X we denote by addX the category of all direct summands of
finite direct sums of copies of X.

For two subcategories A and B of some category we denote by A ∨ B the full
subcategory whose objects are direct sums of one object in A and one object in
B.

Representation dimension.

2.1. Definition (Auslander [2]). Let Λ be a finite dimensional algebra. Then the
representation dimension of Λ is

repdim Λ = min{gld EndΛ(G) | G ∈ mod Λ generator and cogenerator}.
Here gld EndΛ(G) denotes the global dimension of the endomorphism ring, and G
being a generator and cogenerator means that all projective and injective modules
are in addG.

A generator cogenerator G realizing the minimum in the definition above is
called Auslander generator.

Auslander’s main motivation for defining this homological invariant is the fol-
lowing result.

2.2. Theorem (Auslander [2]). Let Λ be a finite dimensional algebra. Then
repdim Λ ≤ 2 if and only if Λ has finite representation type.
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We should also mention the following two more recent results which show that
the representation dimension is reasonably well behaved.

2.3. Theorem (Iyama [14]). Let Λ be a finite dimensional algebra. Then

repdim Λ <∞.

2.4. Theorem (Rouquier [24]). Let Λ be the exterior algebra of an n-dimensional
vector space, n ∈ N≥1. Then

repdim Λ = n+ 1.

In particular any nonnegative integer different from 1 occurs as the representation
dimension of some algebra.

Since our aim in this paper is to show that certain algebras have representation
dimension at most 3 we will need to find a generator cogenerator G such that
gld End(G) ≤ 3. Our method of verifying this (once we have a candidate G) is
the following.

2.5. Lemma (implicit by Auslander, explicit in [8]). Let Λ be a non-semisimple
finite dimensional algebra, and G ∈ mod Λ a generator and cogenerator, and n ∈
N≥2. Then the following are equivalent:

(1) gld EndΛ(G) ≤ n, and
(2) for any X ∈ mod Λ there is an exact sequence

Gn−2
- - Gn−3

- · · · - G0
-- X

with Gi ∈ addG, such that the induced sequence

HomΛ(G,Gn−2)- - · · · - HomΛ(G,X) - 0

is also exact. (In this situation we say that X has a G-resolution of length
n− 2.)

2.6. Remark. The sequence

Gn−2
- - Gn−3

- · · · - G0
-- X

being a G-resolution just means that the rightmost map is a right G-approximation
of X, the next map is induced by a right G-approximation of the kernel of the
first, and so on.

In particular, for n = 3 the claim “X has a G-resolution of length 1” just means
that the kernel of a right G-approximation of X is in addG.

Quasi-tilted algebras.

2.7. Definition. An abelian category H is called hereditary if Ext2
H(X, Y ) = 0 for

any X, Y ∈ H. (Here Ext2
H is understood as the Yoneda-Ext, see [26].)

2.8. Definition. An object T of a hereditary category H is called tilting object if

(1) Ext1
H(T, T ) = 0, and

(2) any object X ∈ H with HomH(T,X) = 0 and Ext1
H(T,X) = 0 is the zero

object.

Now we are ready to define quasi-tilted algebras.
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2.9. Definition (Happel, Reiten, and Smalø [13]). A finite dimensional k-algebra
Λ is called quasi-tilted if Λ ∼= EndH(T ) for some tilting object T in a hereditary
category H. It is called tilted if moreover H can be chosen to be the module
category of a hereditary algebra.

For tilted algebras the result we wish to prove here in the more general setup
of quasi-tilted algebras has been shown by Assem, Platzeck, and Trepode.

2.10. Theorem ([1]). Let Λ be a tilted algebra. Then repdim Λ ≤ 3.

Derived categories of hereditary categories. Since tilting induces a derived
equivalence RHom(T,−) between the categories involved we need to understand
the derived categories of hereditary categories. The following description of these
derived categories is well-known.

2.11. Theorem. Let H be a hereditary category. Then the derived category of H
is

Db(H) = ∨i∈ZH[i].

That is, any object in Db(H) is the direct sum of stalk complexes.

2.12. Remark. Assume A is derived equivalent to H. Then we fix one derived
equivalence, and identify A with its image under

A ⊂ - Db(A)
∼=- Db(H).

In particular, if H is hereditary, A can be described by saying which shifts of
which objects in H lie in A.

In the situation of a derived equivalence induced by tilting this amounts to the
following:

2.13. Theorem ([13, Section I.4]). Let H be a hereditary category, T ∈ H a tilting
object, and Λ = EndH(T ). Via the equivalence RHomH(T,−) the module category
of Λ is identified with

mod Λ = FacH T ∨ (SubH τT )[1].

Classification of hereditary categories with tilting objects. Definition 2.9
suggests that the first step towards understanding quasi-tilted algebras might be
studying possible hereditary categoriesH. Happel has classified all such categories
which contain a tilting object up to derived equivalence.

2.14. Theorem (Happel [11]). Let H be a connected hereditary category with a
tilting object. Then H is derived equivalent to one of the following:

(1) modH, where H is a finite dimensional hereditary k-algebra, or
(2) coh X, where X is a weighted projective line (introduced by Geigle and Lenz-

ing, see [9]).

Thus our investigation may be split up into these two cases. It will be shown at
the end of this section that we may actually restrict ourselves to (a special subcase
of) the second case.
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Coherent sheaves over a weighted projective line. A weighted projective
line X is the projective line P1

k together with a finite set of points p1, . . . , pr ∈ P1
k,

and, for each of these, a weight wi ∈ N≥2. For background on weighted projective
lines and the coherent sheaves on them see [9]. We recall only the results needed
here.

We denote by VB and tor the full subcategories of coh X in which the objects
are vector bundles and torsion sheaves, respectively.

2.15. Theorem (see [9]). Let X be a weighted projective line. Then coh X =
VB∨ tor, that is any coherent sheaf on X is the direct sum of a vector bundle and
a torsion sheaf. Moreover HomX(tor, VB) = 0 = Ext1

X(VB, tor).
The category of torsion sheaves decomposes as a coproduct of categories tor =∐
p∈P1

k
torp. For p 6∈ {p1, . . . , pr} the category torp is the uniserial finite length

category with one simple object (= finite length modules over k[[x]] – its Auslander-
Reiten quiver is a homogeneous tube). For p = pi the category torp is the connected
uniserial finite length category with wi simple objects, that is the category having
a tube of rank wi as its Auslander-Reiten quiver.

The structure of VB depends on the weights:

• If there are at most two weights, or if there are three weights (w1, 2, 2),
(2, 3, 3), (2, 3, 4), or (2, 3, 5) for some w1, then VB consists of only one
Auslander-Reiten component.
• If the weights are (2, 2, 2, 2), (2, 3, 6), (2, 4, 4), or (3, 3, 3), then the weighted

projective line is called tubular. In this case VB = ∨q∈QVBq. Moreover,
VBq ≈ tor for any q ∈ Q, and for q1 < q2 we have HomX(VBq2 , VBq1) = 0 =
Ext1

X(VBq1 , VBq2).
• In all other cases VB is wild.

The case H derived equivalent to coh X. The hereditary categories H which
are derived equivalent to coh X for some weighted projective line X have been
studied by Lenzing and Skowroński in [18]. They obtained the following classifi-
cation.

2.16. Theorem. Let H be hereditary and derived equivalent to coh X for some
weighted projective line X. Then H is equivalent to one of the following (they are
described as indicated in Remark 2.12, that is by saying which shifts of which coher-
ent sheaves on X are in H, when H is identified with a subcategory of Db(coh X)):

(1) modH for a tame hereditary algebra H,
(2) torS [−1] ∨ VB ∨ torP1

k\S for some S ⊆ P1
k. Here and in the following

torS =
∐

p∈S torp denotes the category of all torsion sheaves corresponding
to one of the points in S.

(3) (∨q∈Q>xVBq)∨tor∨
(
∨q∈Q≤x

VBq[1]
)

for some x ∈ R, if the weights of X are
(2, 2, 2, 2), (2, 3, 6), (2, 4, 4), or (3, 3, 3).

By Theorem 2.10 any tilted algebra has representation dimension at most three.
Therefore we may disregard the first case above.

Now assume we are in the third case above, and T ∈ (∨q∈Q>xVBq) ∨ tor ∨(
∨q∈Q≤x

VBq[1]
)

is a tilting object. Then there is x̃ ∈ Q such that T ∈ (∨q∈Q>x̃
VBq)∨

tor ∨
(
∨q∈Q≤x̃

VBq[1]
)
≈ coh X, where the equivalence is given in [20]. Hence any
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algebra tilted from a hereditary category coming up in the third case above is also
tilted from a hereditary category coming up in the second case above.

Hereditary categories derived equivalent to module categories. Now we
investigate the first case of Happel’s Theorem (Theorem 2.14). That is we have a
hereditary category derived equivalent to a module category.

If the hereditary category is derived equivalent to the module category of a
representation finite algebra it is easy to see that it again is the module category
of a representation finite algebra. The endomorphism ring of any tilting module
(even of any tilting complex in the derived category) is representation finite, that
is has representation dimension at most two. Hence we may disregard that case.

If the hereditary category is derived equivalent to a tame hereditary algebra
then it is also derived equivalent to a weighted projective line (see [9, 5.4.1]).
Hence this hereditary category is treated in Theorem 2.16, and we do not need to
treat it here.

Finally assume we have a hereditary category H which is derived equivalent to
the module category of a wild hereditary algebra H. If H contains a projective
object, then by [10] it is equivalent to the module category of a hereditary algebra.
Hence by Theorem 2.10 the endomorphism ring of any tilting object has repre-
sentation dimension at most three. Therefore we may assume that H does not
contain any projective objects. Then, by [10, Proposition 4.8(2)], H is equivalent
to one of the following, where P , R, and I denote the preprojective, regular, and
preinjective components of modH respectively.

• I[−1] ∨ P ∨R, or
• R ∨ I ∨ P [1].

In the first case one can see that for any tilting object T we have τ−nT ∈ P ∨ R
for n sufficiently big, and hence EndH(T ) = EndH(τ−nT ) is tilted. In the second
case dually τnT ∈ R ∨ I for sufficiently large n, and again EndH(T ) is tilted.

Conclusion (of this section). We have shown that we may restrict ourselves
to the following case.

2.17. Theorem. Assume Λ is connected, quasi-tilted, and not tilted. Then there is
a weighted projective line X and a subset S ⊆ P1

k such that Λ is the endomorphism
ring of a tilting object in the hereditary category

H = torS [−1] ∨ VB ∨ torP1
k\S , (2.1)

defined inside the derived category of coh X.

3. Construction of an Auslander generator I

From now on we assume the following setup (we may do so by Theorem 2.17
above).

We have a weighted projective line X with weights w1, . . . , wr attached in points
p1, . . . , pr, respectively. We have a hereditary category H inside Db(coh X) as in
formula (2.1) above. We have a tilting object T ∈ H. Equivalently, T is a tilting
complex in Db(coh X) which is of the form

T =
⊕
p∈S

TLp ⊕ TVB ⊕
⊕

p∈P1
k\S

TRp ,
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with TLp ∈ torp[−1], TVB ∈ VB, and TRp ∈ torp. Note that TVB 6= 0, since otherwise
there would be no maps or extensions from T to any of the homogeneous tubes.

We set Λ = EndDb(coh X)(T ). We will think of mod Λ as a subcategory of

Db(coh X) as indicated in Remark 2.12 and Theorem 2.13. In particular we identify

proj Λ = addT , and

inj Λ = add νT.

(The first identification is done since RHom(T,−) maps addT to proj Λ, the
second follows from the first by applying ν, see Remark 3.3).

3.1. Remark. We will always work inside the triangulated category Db(coh X).
However, we will make use of the following three abelian subcategories:

• coh X,
• H,
• mod Λ.

Therefore it is always necessary to specify which of the abelian structures we are
talking about when using terms like “short exact”, “kernel”, or “cokernel”.

3.2. Remark. With the identification of Theorem 2.13 we have

mod Λ = {X ∈ Db(mod Λ) | HomDb(mod Λ)(Λ, X[i]) = 0 ∀i 6= 0}
= {X ∈ Db(coh X) | HomDb(coh X)(T,X[i]) = 0 ∀i 6= 0},

and similarly

mod Λ = {X ∈ Db(coh X) | HomDb(coh X)(X, νT [i]) = 0 ∀i 6= 0}.

3.3. Remark. Here and throughout the paper ν denotes the Serre functor of
Db(coh X), and τ = ν[−1] the Auslander-Reiten translation in Db(coh X). Note
that τ coincides with Auslander-Reiten translation in coh X and H whenever the
objects in question are in these categories. The Auslander-Reiten translation in
mod Λ will be denoted by τΛ.

Wings. The rest of this section is devoted to wings in the tubes of torsion sheaves
over X. Taking these wings as part of our Auslander generator is the crucial idea
of our proof of Theorem 1.1.

3.4. Definition (see [22]). Let T be a tube of rank w. A wing in T is the direct
sum of all subquotients in T of one fixed indecomposable object of length w − 1.

The following picture illustrates this concept on the example of a tube of rank
four. Here the indecomposable direct summands of a wing correspond to the
vertices in the triangle in the following picture (where the left and right side are
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identified):
...

...
...

...
...

...
...

◦ ◦ ◦ ◦ ◦

◦
--

◦
--

◦
--

◦
--

◦
-

◦
--

◦
--

◦
--

◦
-

◦
--

◦
--

◦
--

◦
--

◦
-

◦
--

◦
--

◦
--

◦
-

We now want to choose a wing in every non-homogeneous tube in tor. The
following lemma ensures that we can do this in such a way that the part of T in
that tube also lies in the wing.

3.5. Lemma. With the notation as above, let p ∈ P1
k \ S. Then there is a wing

Wp in torp such that TRp ∈ addWp.

Proof. Since TVB 6= 0, by [9] there is a simple object S ∈ torp such that HomX(TVB, S) 6=
0. We choose Wp to be the wing such that τ−S 6∈ addWp.

Note that HomX(TVB, X) 6= 0 for all indecomposable X ∈ torp which are not
in the wing not containing S. Hence Ext1

X(X,TVB) = HomX(TVB, τX) 6= 0 for all
indecomposable X ∈ torp which are not in the wing Wp. Hence TRp ∈ addWp. �

This lemma tells us that it is always possible to make the following construction.

3.6. Construction. For i ∈ {1, . . . .r} we choose a wing Wpi
in torpi

such that

• if pi ∈ S then νTLpi
∈ addWpi

, and

• if pi 6∈ S then TRpi
∈ addWpi

.

This is possible by Lemma 3.5 and its dual.

Now we set W =
⊕r

i=1Wpi
, and choose W̃ such that

add W̃ = mod Λ ∩ addW.

Remember that we identify mod Λ with a subcategory of the derived category of
coh X, so the intersection above makes sense.

4. The influence of the wings

Before we collect the remaining parts of our Auslander generator in Section 5
and we get to the more technical parts of the proof, we use this short section to
explain why we want the wings to be summands of the Auslander generator, and
how these wings affect resolutions.

For comparison we also remark how the complete slice, in Assem, Platzeck, and
Trepode’s proof (in [1]) that the representation dimension of tilted algebras is at
most three, behaves opposed to the wings we have here.

4.1. Definition. For an object X in a triangulated category T we denote by

X⊥ = {T ∈ T | HomT (X,T [i]) = 0∀i}
the complete orthogonal of X. (Here “complete” refers to the fact that we don’t
just require the morphisms to certain shifts to vanish.)
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4.2. Remark. For a tilted algebra and a complete slice S as in the proof in [1],
the category S⊥ is zero.

Here we are interested in the category completely orthogonal to the wings.
While it does not vanish, as in the tilted case, the following theorem shows that
it is coh P1

k, a category we know comparatively well.

4.3. Theorem. With the notation above we have

W⊥ = W̃⊥ ≈ Db(coh P1
k),

and the equivalence is induced by an equivalence W̃⊥ ∩ coh X ≈ coh P1
k.

4.4. Notation. We will identify along the equivalence of Theorem 4.3. That is,
we will see coherent sheaves on P1

k as special coherent sheaves on X.

Proof of 4.3. We first construct a partial tilting object V ∈ add W̃ tube by tube
as follows:

Assume first pi ∈ S. Then add W̃pi
= {X ∈ addWpi

| Ext1(X, νTpi
) = 0} (see

Remark 3.2). Since νTpi
∈ addWpi

one easily verifies that the longest summand

of the wing and all its subobjects are in add W̃pi
. We choose Vpi

to be the direct
sum over these wi − 1 objects.

Dually one can construct Vpi
for pi ∈ P1

k \ S. Then we set V =
⊕r

i=1 Vpi
. It is

clear that Ext1
X(V, V ) = 0, and by construction V ∈ add W̃ .

Since Ext1
X(V, V ) = 0, by applying [12, Corollary 2.8] repeatedly, one obtains

that V ⊥ ∩ coh X is a hereditary category with a tilting object.
Since this hereditary category contains a P1

k-family of homogeneous tubes, and
there are no maps from these tubes to anything else, the classification results (The-
orems 2.14 and 2.16) imply that V ⊥∩ coh X ≈ coh P1

k. Extending this equivalence
to shifts we obtain V ⊥ ≈ Db(coh P1

k).
Finally note that any indecomposable direct summand of W occurs in a short

exact sequence, where the other two terms are direct summands of V . Therefore

V ⊥ ⊆ W⊥. Since moreover addV ⊆ add W̃ ⊆ addW we have V ⊥ = W̃⊥ =
W⊥. �

Now remember that mod Λ lies in H ∨ H[1], and that the largest (and least
controlled) part of H is VB. Since the wings lie in tor there are no maps to VB,
and (as coherent sheaves over X) the approximation of an object in VB[1] by W is
a universal extension. Hence we have to understand such universal extensions.

4.5. Definition. Let A be an abelian category, and X, Y ∈ A. A short exact
sequence Y ′- - E -- X is called a universal extension of X by objects in
addY , if

(1) Y ′ ∈ addY , and
(2) any other short exact sequence Y ′′- - F -- X with Y ′′ ∈ addY is a

pushout of the first short exact sequence.

It is the minimal universal extension if moreover

(3) the map E -- X is right minimal, or, equivalently, the sequence does
not contain a direct summand of the form Y ′′- - Y ′′ -- 0 with Y ′′ 6= 0.
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The minimal universal extension of X by objects in addY is unique up to iso-
morphism. Whenever we refer to the universal extension we mean the minimal
one.

Dually one defines universal extensions of objects in addX by Y .
Note that if dimk Ext1

A(X, Y ) <∞ (so in particular in all categories we consider
in this paper) then minimal universal extensions exist.

4.6. Remark. For H = modH with H a hereditary algebra, and the complete
slice DH ∈ Db(H) as in [1], for any X ∈ H the universal extension of an object
in addDH by X lies in addDH.

Here we look at universal extensions with wings, and where they lie.

4.7. Construction. Let X ∈ VB. We denote by E(X) the universal extension (in

coh X) of objects in add W̃ by X.

4.8. Proposition. For any X ∈ VB we have E(X) ∈ VBP1
k
∨ add W̃ . Here VBP1

k

denotes the vector bundles over P1
k, which are identified with certain vector bundles

over X via the equivalence of Theorem 4.3.

Proof. Let E(X)VB and E(X)tor be the vector bundle and torsion part of E(X),
respectively. Then we can construct the following pushout diagram in coh X.

E(X)tor - W ′

X- - E(X)
?
?

-- W̃ ′
?
?

PO

K

??
- - E(X)VB

??
-- W ′′

??

Here W̃ ′ ∈ add W̃ , and K and W ′ are kernels. Since W ′ and W ′′ are sub- and

factor objects of W̃ ′ they are in addW . By the snake lemma the kernel of the
left vertical map is a subobject of E(X)tor, hence a torsion sheaf. Since X has
no non-zero torsion sheaves as subsheaves we have X = K, and the pushout is
actually exact. Therefore also the top horizontal map is an isomorphism.

Now we decompose W̃ ′ = W̃ ′
S ⊕ W̃ ′

P1
k\S

with W̃ ′
S ∈ torS and W̃ ′

P1
k\S
∈ torP1

k\S .

We decompose W ′ and W ′′ similarly.
We now factor the map above as indicated in the following diagram.

X- - E(X) -- W̃ ′
S ⊕ W̃ ′

P1
k\S

exact

X

wwwww
- - ?

??
-- W̃ ′

S ⊕W ′′
P1

k\S

??

exact

K

wwwww
- - E(X)VB

??
-- W ′′

S ⊕W ′′
P1

k\S

??

Since mod Λ is closed under quotients in H it is also closed under quotients in the

tubes torp with p ∈ P1
k \ S. Hence W̃ ′

S ⊕W ′′
P1

k\S
∈ add W̃ . Since the top sequence
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in the diagram is a universal extension this means W̃ ′
P1

k\S
= W ′′

P1
k\S

, and hence

W ′
P1

k\S
= 0.

Now note that (dually to the argument above) mod Λ is closed under subobjects

in the tubes torp with p ∈ S. Hence E(X)tor = W ′ = W ′
S ∈ add W̃ .

It remains to see that E(X)VB ∈ VBP1
k
. Note that HomDb(coh X)(W̃ , VB[i]) = 0 for

all i 6= 1. Hence it suffices to show Ext1
X(W̃ , E(X)) = 0. Let E(X)- - H -- W̃

be any element of this Ext-group. We construct the pushout as indicated in the
following diagram.

X- - E(X) -- W̃ ′

PO

X

wwwww
- - H

?

?

-- W̃ ′′
?

?

W̃

??

======== W̃

??

Since W̃ ′′ is an extension of W̃ by W̃ ′ we have W̃ ′′ ∈ add W̃ . Since the upper
sequence is a universal extension it is a direct summand of the middle horizontal

sequence. In particular the short exact sequence E(X)- - H -- W̃ splits.

Therefore Ext1
X(W̃ , E(X)) = 0, and hence E(X)VB ∈ VB ∩ W̃⊥ = VBP1

k
. �

5. Construction of an Auslander Generator II

We now collect the remaining, more technical summands of our Auslander gen-
erator. The reason for these parts to be necessary are the following limitations of
Proposition 4.8 opposed to Remark 4.6.

• The universal extension can (and will) include line bundles on P1
k, and

• Proposition 4.8 only applies to VB, not to all of H.

Line bundles orthogonal to the wings.

5.1. Construction. With E as in Construction 4.7 we set

dmin = min{i ∈ Z |OP1
k
(i) is isomorphic to a direct

summand of E(TVB)}
dmax = max({i ∈ Z |OP1

k
(i) is isomorphic to a direct

summand of E(TVB ⊕ τ 2TVB)} ∪ {dmin + 1})
By choosing a special equivalence in Theorem 4.3 we may (and will for the rest of
the paper) assume dmin = 0. We then write d = dmax.

We set

L =
d⊕
i=0

OP1
k
(i).

To see that this is a legal ingredient for the Auslander generator we need the
following result.

5.2. Lemma. The line bundle OP1
k
(i) is in mod Λ if and only if i ≥ 0.
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Proof. Since OP1
k

is a direct summand of an extension of TVB with an object in

add W̃ it is in mod Λ. Now recall (Theorem 2.13) that mod Λ∩H is closed under
quotients. Then the “if”-part of the lemma follows from the fact that OP1

k
(i) ∈

FacHOP1
k

for i ≥ 0.

For the converse assume OP1
k
(i) ∈ mod Λ. Again by Theorem 2.13 this means

that OP1
k
(i) ∈ FacH T . In particular there is non-zero map TVB - OP1

k
(i). Since

Hom(W̃ ,OP1
k
(i)[1]) = 0 this map factors through TVB- - E(TVB). Now i ≥ 0

follows from the convention in Construction 5.1 and the fact that there are no
non-zero maps OP1

k
(i) - OP1

k
(j) for i > j. �

Left and right ends.

5.3. Construction. We choose
←−
T and

−→
T such that

add
←−
T = {X ∈ mod Λ | τΛX ∈ mod Λ ∩ tor[−1]}, and

add ν
−→
T = {X ∈ mod Λ | τ−Λ X ∈ mod Λ ∩ tor[1]}.

Choosing such a
←−
T is possible since mod Λ ∩ tor[−1] =

∏
p∈S Factorp[−1] T

L
p has

only finitely many indecomposables. Dually it is possible to choose
−→
T .

Note that T ∈ add
←−
T and T ∈ add

−→
T .

The Auslander generator.

5.4. Theorem. Let H be a hereditary category and T ∈ H tilting as described at
the beginning of this section. Then for the generator cogenerator

G =
←−
T ⊕ L⊕ W̃ ⊕ ν

−→
T

of mod End(T ) we have
gld End(G) = 3,

and hence
repdim End(T ) ≤ 3.

5.5. Remark. One easily sees that in the setup of Theorem 5.4 above all homo-
geneous tubes in tor lie in mod End(T ). Hence End(T ) is representation infinite,
and we have

repdim End(T ) = 3.

We conclude this section by pointing out that Theorem 5.4 implies Theorem 1.1.

Proof of Theorem 1.1. Clearly it suffices to prove the theorem for connected alge-
bras. By Theorem 2.10 and Auslander’s characterization of finite representation
type the theorem holds for tilted algebras. In Theorem 2.17 we have seen that
any quasi-tilted algebra which is not tilted comes up in the setup of Theorem 5.4,
hence has representation dimension at most three. Finally, either by Remark 5.5
or by [13, Corollary II.3.6], any quasi-tilted non-tilted algebra is representation
infinite, and hence has representation dimension exactly three. �

Since Assem, Platzeck, and Trepode have shown (see [1, Theorem 4.1]) that any
connected Laura-algebra which is not quasi-tilted has representation dimension at
most three, the following is an immediate consequence of Theorem 1.1.
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5.6. Corollary. Let Λ be a Laura-algebra. Then the representation dimension of
Λ is at most three.

6. Proof of Theorem 5.4

By Lemma 2.5 we have to show that any Λ-module has a G-resolution of length
1, that is that the kernel of its right minimal addG-approximation is again in
addG. We may restrict to indecomposable modules.

Clearly we may disregard the case of an indecomposable module in addG. In
particular we do not have to look at indecomposable modules in mod Λ∩ tor[−1]
or mod Λ ∩ tor[1]. The following three cases remain:

• An indecomposable module in mod Λ ∩ VB,
• an indecomposable module in mod Λ ∩ tor, or
• an indecomposable module in mod Λ ∩ VB[1].

We will gather the result for these three cases in Propositions 6.5, 6.7, and 6.10.
Before we distinguish the cases we have the following general observations on

approximations by ν
−→
T and

←−
T .

6.1. Lemma. Assume X is an indecomposable Λ-module, and X 6∈ add ν
−→
T . Then

any map ν
−→
T - X factors through an injective module.

Proof. Assume X ∈ mod Λ is indecomposable, such that HomΛ(ν
−→
T ,X) 6= 0.

(Here HomΛ denotes morphisms modulo such morphisms that factor through in-
jective modules. Dually HomΛ denotes morphisms modulo ones factoring through
projective modules.) By the Auslander-Reiten formula (see for instance [4])

HomΛ(τ−Λ ν
−→
T︸ ︷︷ ︸

∈mod Λ∩tor[1]

, τ−Λ X) = HomΛ(ν
−→
T ,X) 6= 0.

Since mod Λ ∩ tor[1] is closed under successors also τ−Λ X ∈ mod Λ ∩ tor[1], and

hence X ∈ add ν
−→
T . �

6.2. Lemma. Assume there is an exact sequence of Λ-modules

G′′- - G′
f- X -- C

with G′, G′′ ∈ addG, C ∈ mod Λ ∩ coh X and such that the map

Hom(L⊕ W̃ ⊕ ν
−→
T ,G′)

f∗- Hom(L⊕ W̃ ⊕ ν
−→
T ,X)

is onto. Then G -resol.dimX ≤ 1.

Before we can prove this, we need the following two results.

6.3. Lemma. Let X ∈ mod Λ ∩ (tor[−1] ∨ VB ∨ tor). Then ΩX ∈ add
←−
T . (Here

Ω denotes the syzygy as Λ-module.)

Dually, for X ∈ mod Λ ∩ (tor ∨ VB[1] ∨ tor[1]) we have fX ∈ ν
−→
T .

Proof. Let X ∈ mod Λ∩ (tor[−1]∨VB∨tor). Let Ω′ be an indecomposable direct
summand of ΩX. By the Auslander-Reiten formula

HomΛ(τΛΩ′, τΛΩX) = DExt1(ΩX, τΛΩ′) = DExt2(X, τΛΩ′)

= DHom(X[−2], τΛΩ′).
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(Here D denotes the duality Hom(−, k).) If τΛΩ′ = 0 then Ω′ ∈ add
←−
T as claimed.

Otherwise all the terms above are non-zero. Hence X ∈ tor and τΛΩ′ ∈ tor[−1].

Therefore Ω′ ∈ add
←−
T as claimed also in this case.

Clearly the second part of the lemma is dual to the first. �

6.4. Lemma. Let X --
←−
T ′ be a right minimal epimorphism in mod Λ, with←−

T ′ ∈ add
←−
T . Then X ∈ add

←−
T .

Dually, if ν
−→
T ′- - X is a left minimal monomorphism in mod Λ, with

−→
T ′ ∈

add
−→
T , then X ∈ add ν

−→
T .

Proof. Before we start the actual proof we need the following observation on Λ-
modules in tor[−1]:

The indecomposable objects in mod Λ ∩ tor[−1] are partially ordered by

X � Y ⇐⇒ ∃X 6=0- X1
6=0- · · · 6=0- Xn

6=0- Y

with X1, . . . , Xn indecomposable.

This follows from the facts that the indecomposable objects in mod Λ∩torp[−1] all
lie in the wing add ν−1Wp, and that modules in different tubes are incomparable.

Now we prove the lemma. We may assume
←−
T ′ is indecomposable, and the map

X --
←−
T ′ not split epi. We assume further, contrary to the claim of the lemma,

that X = X ′ ⊕ X ′′ with X ′ indecomposable and X ′ 6∈ add
←−
T . This setup gives

rise to a short exact sequence

K- - X ′ ⊕X ′′ --
←−
T ′

without any split components. In particular Ext1(
←−
T ,K ′) �� Hom(K ′, τ

←−
T ) 6= 0

for any indecomposable summand K ′ of K. Hence K ∈ mod Λ ∩ tor[−1].
We may assume this sequence to be maximal in the following sense: For any

K ′ ∈ mod Λ ∩ tor[−1] and X ′′′ ∈ mod Λ such that there is an exact sequence

K ′- - X ′ ⊕X ′′′ --
←−
T ′

there is at least one indecomposable direct summand of K ′ which is no proper
successor of any indecomposable summand of K.

Now we denote by K- - ϑ−K -- τ−K the almost split sequence starting
in K (if K is not indecomposable we add up the almost split sequences). Then
we obtain the following diagram, where the center map exists by the factorization
property of almost split sequences.

K- - X ′ ⊕X ′′ --
←−
T ′

K

wwwww
- - ϑ−K

6

-- τ−K

6

The right square gives rise to a short exact sequence

ϑ−K- - X ′ ⊕X ′′ ⊕ τ−K --
←−
T ′.

By general Auslander-Reiten theory (see [4]) we have ϑ−K ∈ add
←−
T . Hence the

component ϑ−K - X ′ is a radical map. We split off all direct summands of
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ϑ−K which are mapped isomorphically to a direct summand of the middle term
of the above sequence, and obtain a short exact sequence

K ′- - X ′ ⊕X ′′′ --
←−
T ′,

with K ′ a direct summand of ϑ−K. This contradicts the maximality of our choice
of K.

Therefore all direct summands of X have to be in add
←−
T .

The second part of the lemma is dual. �

Now we are ready to show Lemma 6.2.

Proof of 6.2. In the setup of the lemma we need to extend f such that also any

map from
←−
T to X factors through it. We do so in two steps. First we show that

we may assume f to be onto:

We take a projective cover T ′ of C. Its kernel (as Λ-modules) ΩC is in add
←−
T

by Lemma 6.3.
We now have the following diagram

G′′- - G′
f

- X -- C

ImΛ f
-

---

PB
G′′

wwwww
- - G′′′

6

- T ′

6

-- C

wwwww
ΩC

6

-
---

where the map T ′ - X exists since T ′ is projective, the map ΩC - ImΛ f
is the kernel morphism, and G′′′ is the pullback of the square to its upper right.
By Lemma 6.4 we have G′′′ ∈ addG.

The central square can be seen as a short exact sequence. By setting G̃′ = G′⊕T ′
and G̃′′ = G′′′ we obtain

G̃′′- - G̃′
ef-- X

as in the lemma, but with the additional condition that f̃ is an epimorphism of
Λ-modules.

Now we choose a right
←−
T -approximation

←−
T ′ - X. Then we consider the

following pullback diagram.

G̃′′- - G̃′
f̃
-- X

PB

G̃′′

wwwww
- - G̃′′′

6

--
←−
T ′

6

By Lemma 6.4 we have G̃′′′ ∈ addG. Moreover the right square turns into the
short exact sequence

G̃′′′- - G̃′ ⊕
←−
T ′ -- X

which is a (not necessary minimal) G-resolution of X. �

We now distinguish the three cases according to where indecomposable modules
could lie.
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Modules in mod Λ∩VB. We assumeX ∈ mod Λ∩VB. Then a rightG-approximation

of X is a right (
←−
T ⊕ L)-approximation.

We denote by H the trace of OP1
k

in X as coherent sheaves on X. Hence, in
coh X, we have a short exact sequence

H-
ι- X -- C0

with C0 ∈ coh X. Since H ∈ FacXOP1
k

and H ∈ VB ⊂ H we have H ∈ FacHOP1
k
⊂

mod Λ. Applying Hom(W̃ ,−) to a short exact sequence Ker- - O?
P1

k

-- H of

coherent sheaves over X one sees that Ext1
X(W̃ ,H) = 0. Since H ∈ VB this means

H ∈ VBP1
k
, and moreover since H ∈ mod Λ we have that H is the direct sum of

copies of objects of the form OP1
k
(i) with i ≥ 0 (Lemma 5.2). In particular there

is a short exact sequence of coherent sheaves on X

L′′- - L′ -- H

with L′ and L′′ ∈ addL, where the map L′ -- H can be chosen to be a right
L-approximation of H. Since all three objects are Λ-modules, this is also a short
exact sequence in mod Λ.

We now consider ι as a map of Λ-modules. We denote its kernel and cokernel
by K and C, respectively.

Since ι is a monomorphism in coh X we have K ∈ torS [−1]. Now let K̃ be the
kernel of the composition L′ -- H - X of maps of Λ-modules. The following

diagram of Λ-modules shows that K̃ is an extension of K by L′′.

K- - H -- ImΛ ι

K̃

66

- - L′

66

-- ImΛ ι

wwwww

L′′
6

6

======== L′′
6

6

Since Ext1
Λ(K,L′′) = 0 (because K ∈ torS [−1] and L′′ ∈ VB) we have K̃ = K⊕L′′.

Now we focus on the cokernel C. Note that there is a triangle

K[1]
h- Cone(ι)︸ ︷︷ ︸

=C0

- C - K[2].

Since C0 ∈ coh X the map h can only be non-zero on direct summands of C0 which
lie in torS . Hence C ∈ mod Λ ∩ (coh X ∨ torS [1]) = mod Λ ∩ coh X.

Now the exact sequence

K ⊕ L′′- - L′ - X -- C

of Λ-modules satisfies the conditions of Lemma 6.2. Therefore we have shown

6.5. Proposition. Assume we are in the setup if Theorem 5.4, and X ∈ mod Λ∩
VB. Then G -resol.dimX ≤ 1.
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Modules in mod Λ ∩ tor. Now we assume X to be indecomposable in mod Λ ∩
torp for some p ∈ P1

k. We may assume that X 6∈ addWp. As before we denote by
H the trace of OP1

k
in X as coherent sheaves over X. Moreover we denote by H0

the trace of Wp in X. Note that H0 is the trace of the unique longest summand

of Wp. In particular it belongs to FacXOP1
k
∩ FacX W̃p.

6.6. Lemma. In the setup above H and H0 are in mod Λ∩ torp. Moreover H0 is
a subsheaf (as coherent sheaves over X) of H.

Proof. We have to distinguish two cases:
Case p ∈ S: Then mod Λ is closed under subobjects in the tube. Hence H and

H0 are in mod Λ.
Case p ∈ P1

k \ S: Now all objects involved are in H, and H,H0 ∈ mod Λ follows
from the fact that mod Λ is closed under factors in H.

The second claim follows from the fact that H0 ∈ FacXOP1
k
. �

As before, by applying Hom(W,−) to a short exact sequence Ker- - O?
P1

k

-- H,

we see Ext1(W,H) = 0. Similarly Ext1(W,H0) = 0. Finally we set H = H/H0.
Applying Hom(W,−) to the short exact sequence H0

- - H -- H we see that
H is a torsion sheaf in coh P1

k = W⊥. Hence it has an L-resolution

OP1
k
(d− 1)n- - OP1

k
(d)n -- H

for some n ∈ N (as coherent sheaf over X).
Since Ext1(OP1

k
(d), H0) = 0 we obtain the following diagram,

H0
- - H -- H

OP1
k
(d− 1)n

6

- - OP1
k
(d)n

6

-- H

wwwww
and hence the short exact sequence

OP1
k
(d− 1)n- - H0 ⊕OP1

k
(d)n -- H

of coherent sheaves over X. Since all three objects are modules this is also a short
exact sequence in mod Λ.

Now we denote the kernel and cokernel of the map H
ι- X (in mod Λ) by K

and C, respectively. We obtain the following diagram, where L denotes the kernel
of the map to its right.

K- - H
ι

- X -- C

L

66

- - H0 ⊕OP1
k
(d)n

66

-- ImΛ ι

-

-

--

OP1
k
(d− 1)n
6

6

== OP1
k
(d− 1)n
6

6



Steffen Oppermann 19

As in the case X ∈ mod Λ ∩ VB one sees that K ∈ torp[−1] and C ∈ torp. In
particular the left vertical sequence splits. Hence we get an exact sequence

K ⊕OP1
k
(d− 1)n- - H0 ⊕OP1

k
(d)n

f- X -- C

of Λ-modules. Any map from L or W̃ to X factors through f . Moreover, by

Lemma 6.1 any map from ν
−→
T to X factors through an injective module, hence

through W̃p, and hence through f . Therefore the following proposition follows
from Lemma 6.2.

6.7. Proposition. Assume we are in the setup of Theorem 5.4, and X ∈ mod Λ∩
tor. Then G -resol.dimX ≤ 1.

Modules in mod Λ∩VB[1]. Finally we assume X to be indecomposable in mod Λ∩
VB[1]. We may assume that X 6∈ add ν

−→
T .

We start by approximating X by modules in add ν
−→
T . By Lemma 6.1 is suffices

to approximateX by add νT . We denote such an approximation by f : νT ′ - X,
and its cone by H. The following proposition gives a more precise location of H.

6.8. Proposition. Let X ∈ mod Λ ∩ VB[1] indecomposable, X 6∈ add ν
−→
T , and

let f : νT ′ - X be a right minimal approximation by injective modules. Then
Cone(f) ∈ VB[1], and Cone(f)[−1] ∈ SubH τ

2TVB.

We postpone the proof of this proposition to the end of the section. The fol-
lowing consequence of this proposition will be essential to the discussion here.

6.9. Corollary. Let H as above. Then

E(H[−1]) ∈ add{OP1
k
(i) | i ≤ d} ∨ add W̃ .

(For the definition of E(−) see Construction 4.7.)

Proof. By Proposition 4.8 we have

E(H[−1]) ∈ add{OP1
k
(i) | i ∈ Z} ∨ add W̃ .

Now let H[−1]- - τ 2T nVB be a monomorphism in H, which exists by Proposi-
tion 6.8. Then it is also a monomorphism in coh X. This map can be extended
to the following diagram, where the rows are exact sequences of coherent sheaves
over X coming up in the definition of E(−).

H[−1]- - E(H[−1]) -- W̃ ′

τ 2T nVB

?

?

- - E(τ 2TVB)
n

?
-- W̃ ′′

?

By the snake lemma the kernel of the central vertical map is a subsheaf of the
kernel of the right vertical map. Hence it has finite length. Now the claim follows
from the fact that

E(τ 2TVB)
n ∈ add{OP1

k
(i) | i ≤ d} ∨ add W̃

(which is part of the definition of d in Construction 5.1). �
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Now we ready to add a W̃ -approximation to the ν
−→
T -approximation f of X we

chose above. Note that any map W̃ - X that does not factor through f is

mapped to a nonzero map in Hom(W̃ ,H). Conversely any map in Hom(W̃ ,H)

lifts to a map in Hom(W̃ ,X), since Ext1(W̃ , νT ) = 0. Hence we may take the

W̃ -approximation W̃ ′ - H and complete the following diagram.

H[−1] - νT ′
f
- X - H

H[−1]

wwwww
- E(H[−1])

6

- W̃ ′

6

- H

wwwww
This gives rise to the triangle

E(H[−1]) - νT ′ ⊕ W̃ ′ ef- X - E(H[−1])[1]

where any map from ν
−→
T ⊕ W̃ to X factors through f̃ .

Next we add an L-approximation L′ - X. We obtain the following diagram,
where K is an object completing the lower triangle.

E(H[−1]) - νT ′ ⊕ W̃ ′ f̃
- X - E(H[−1])[1]

E(H[−1])

wwwww
- K

6

- L′

6

- E(H[−1])[1]

wwwww
Since E(H[−1]) and L′ are both in

add{OP1
k
(i) | i ≤ d} ∨ add W̃

(by Corollary 6.9 and the construction of L below 5.1, respectively) this also holds
for K.

As before, the diagram turns into a triangle

K - νT ′ ⊕ W̃ ′ ⊕ L′ - X - K[1].

We now show that K ∈ mod Λ. To do so we have to see that any map from T

to X factors through addL⊕ W̃ .

• For p ∈ S there are no maps TLp - X.
• Applying Hom(−, X) to the triangle

TVB - E(TVB) - W̃ ′′ - TVB[1]

one finds that the map Hom(E(TVB), X) - Hom(TVB, X) is onto. Hence
(by construction of L and Proposition 4.8) any map from TVB to X factors

through addL⊕ W̃ .

• For p ∈ P1
k \ S we have TRp ∈ add W̃ .

Therefore the first map in the following exact sequence (induced by the triangle
above) is onto.

Hom(T, νT ′ ⊕ W̃ ′ ⊕ L′) -- Hom(T,X)

- Hom(T,K[1]) - Hom(T, (νT ′ ⊕ W̃ ′ ⊕ L′)[1]).
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Since νT ′ ⊕ W̃ ′ ⊕ L′ ∈ mod Λ the last term above vanishes, and therefore so does
Hom(T,K[1]). This shows K ∈ mod Λ, and the triangle gives rise to a short exact
sequence

K- - νT ′ ⊕ W̃ ′ ⊕ L′ -- X

of Λ-modules.
Now we are done by Lemma 6.2.

6.10. Proposition. Assume we are in the setup if Theorem 5.4, and X ∈ mod Λ∩
VB[1]. Then G -resol.dimX ≤ 1.

It remains to prove Proposition 6.8. We recall the claim for the convenience of
the reader.

6.8. Proposition. Let X ∈ mod Λ ∩ VB[1] be indecomposable, X 6∈ add ν
−→
T , and

let f : νT ′ - X be a right minimal approximation by injective modules. Then
Cone(f) ∈ VB[1], and Cone(f)[−1] ∈ SubH τ

2TVB.

Proof. We first show that f [−1], seen as a map in H, is a monomorphism. We
denote by K and I the kernel and image of f [−1] in H. Since (mod Λ)[−1]∩H =
SubH τT we have I[1] ∈ mod Λ. Since νT [−1] = τT is a tilting object in H we
have that K ∈ add τT . The triangle K[1] - νT ′ - I[1] - K[2] therefore
comes from a short exact sequence

K[1]- - νT ′ -- I[1]

in mod Λ, which is split, since K[1] ∈ add νT = inj Λ. By the assumption that f
is right minimal this means K = 0.

Hence we have a short exact sequence

τT ′-
f [−1]- X[−1] -- H[−1]

in H, where as before H = Cone(f). In particular H ∈ H[1].
We decompose H = HVB ⊕Htor with HVB ∈ VB[1] and Htor ∈ torP1

k\S [1]. Now

we denote the pullback in the following diagram (in H) by Y [−1].

τT ′-
fY [−1]

- Y [−1] -- Htor[−1]

PB

τT ′

wwwww
-
f [−1]

- X[−1]
?

?

-- H[−1]

split
?

?

Since Y [−1] is a subobject of X[−1] we have Y ∈ mod Λ. Note that since X is
assumed to be in VB[1] the objects Y and Htor have no common summands. Hence
fY is left minimal. We denote by K and C the kernel and cokernel of the map fY
in mod Λ, respectively. Then we have a triangle

K[1] - Htor︸︷︷︸
=Cone(fY )

- C - K[2].

Clearly C and K[2] cannot have any common direct summands, hence the map
Htor

- C is left minimal. Therefore C ∈ torP1
k\S [1]. Since K[2] is the cone of

the map Htor
- C we have K[2] ∈ torP1

k\S [1]∨ torP1
k\S [2]. But K ∈ mod Λ, so

K ∈ torP1
k\S .
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We now denote the image of fY as Λ-morphism by ImΛ fY . Since ImΛ fY = fK
Lemma 6.3 says that ImΛ fY ∈ add ν

−→
T . Since the inclusion ImΛ fY- - Y is left

minimal Lemma 6.4 implies that Y ∈ add ν
−→
T .

Now, by Lemma 6.1, the map Y - X factors through an injective module,
hence through f . Therefore the sequence τT ′- - Y [−1] -- Htor[−1] splits,
and hence Htor = 0.

For the proof of the second claim we apply Hom(−, τ 2T ) to the short exact
sequence τT ′- - X[−1] -- H[−1] in H. We obtain

=0︷ ︸︸ ︷
Hom(τT ′, τ 2T ) - Ext1(H[−1], τ 2T )

- Ext1(X[−1], τ 2T ) -- Ext1(τT ′, τ 2T )

DHom(τT,X[−1])

wwwww
f ∗
- DHom(τT, τT ′)

wwwww
Since f is an injective approximation the map f ∗ above is into, and hence Ext1(H[−1], τ 2T ) =
0. Now note that τ 2T is cotilting in H. Therefore this vanishing of Ext implies
H[−1] ∈ SubH τ

2T .
Since H[−1] ∈ VB there is a monomorphism H[−1]- - τ 2T ′VB ⊕ R in H, with

T ′VB ∈ addTVB and R ∈ torP1
k\S . We obtain the following diagram in H, where ϕ

is the composition of the inclusion above with projection to the direct summand
τ 2T ′VB.

KerH ϕ- - H[−1] -- ImH ϕ

R
?

?

- - τ 2T ′VB ⊕R
?

?

-- τ 2T ′VB

?

?
ϕ
-

Since KerH ϕ is a subobject of R it is in torP1
k\S . Therefore it admits no non-zero

maps to H[−1], and hence KerH ϕ = 0. That shows H[−1] ∈ SubH τ
2TVB. �
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