REPRESENTATION DIMENSION OF QUASI-TILTED
ALGEBRAS

STEFFEN OPPERMANN

ABSTRACT. It will be shown that any quasi-tilted algebra over an algebraically
closed field has representation dimension at most three, confirming a conjecture
of Assem, Platzeck and Trepode.

1. INTRODUCTION

The representation dimension of an artin algebra has been introduced by Aus-
lander [2]. It provides a homological criterion for finite representation type. More
precisely, Auslander has shown that an artin algebra is representation finite (that
is, has only finitely many indecomposable modules up to isomorphism) if and only
if its representation dimension is at most two. He expected that for a representa-
tion infinite algebra its representation dimension should be a measure of how far
the algebra is from being of finite representation type.

However it is not reasonable to expect the representation dimension to measure
the size of the module category in the sense of “number of modules”. Auslander
has shown that any hereditary artin algebra has representation dimension at most
three, but there are examples of quotients of such algebras with arbitrarily large
representation dimension (see [15, 21]). We believe that representation dimension
measures how complicated the homological algebra of the module category is. One
implication is supported by results of Bergh [5] and the author [21] giving lower
bounds for the representation dimension in terms of certain homological behaviour
of the module categories. The result presented here provides support for the other
implication:

From a homological point of view, the easiest (non-trivial) categories are hered-
itary, such as representations of quivers or certain categories of coherent sheaves,
for example on a projective line. The module categories most closely related to
hereditary categories are those of quasi-tilted algebras. These algebras, introduced
by Happel, Reiten, and Smalg [13], are defined to be the endomorphism rings of
tilting objects in hereditary categories. In particular quasi-tilted algebras are de-
rived equivalent to hereditary categories. Happel, Reiten, and Smalg have shown
that quasi-tilted algebras also admit a simple “internal” homological characteri-
zation called almost hereditary (see [13, Chapter II], in particular Theorem 2.3).

Happel [11] has shown that the class of (connected) quasi-tilted algebras can
be subdivided into those quasi-tilted algebras which are derived equivalent to
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2 Quasi-tilted algebras

hereditary algebras, and those which are derived equivalent to weighted projective
lines. In particular any quasi-tilted algebra which is not tilted is derived equivalent
to a weighted projective line (see Section 2).

For the special case of tilted algebras (that is, quasi-tilted algebras where the
hereditary category is representations of a quiver) Assem, Platzeck, and Trepode
[1] have proven that they always have representation dimension at most three.
This, and the observations above, led them to the conjecture that any quasi-tilted
algebra should have representation dimension at most three. Their proof uses the
existence of projective or injective objects in the hereditary category, and hence
cannot be generalized to the case where this category is coherent sheaves on a
weighted projective line.

Weighted projective lines have been introduced by Geigle and Lenzing [9]. From
an algebraic geometric point of view one might think of weighted projective lines
as projective lines, where in certain (finitely many) points the local ring has been
replaced by a semi-local ring. Geigle and Lenzing have shown that the cate-
gories of coherent sheaves over a weighted projective line behave in many ways
like the categories of coherent sheaves over a smooth projective line (see [9] or
Theorem 2.15).

Quasi-tilted algebras derived equivalent to weighted projective lines have been
widely studied (for instance in [6, 7, 25]). In particular, the representation theory
of canonical algebras (the most prominent family of such quasi-tilted algebras —
introduced by Ringel [22] before weighted projective lines or quasi-tilted algebras
had first appeared), and more generally concealed canonical algebras (introduced
by Lenzing and Meltzer [16]) has been thoroughly investigated (see [17, 18, 19,
22, 23]). However, even for the canonical algebras the value of the representation
dimension has so far not been known. We can now fill this gap:

1.1. Theorem. Let A be a quasi-tilted algebra over an algebraically closed field.
Then we have exactly one of the following:
o A is semi-simple,
e the representation dimension of A is two, and A is representation finite
and tilted, or
e the representation dimension of A is three, and A is representation infinite.

In particular, any quasi-tilted non-tilted algebra has representation dimension three.

The strategy of the proof is as follows:

Assume A is a connected quasi-tilted algebra which is not tilted. It follows
from [11] that A is tilted from a hereditary category H which is derived equivalent
to coherent sheaves on a weighted projective line. Lenzing and Skowronski [18]
classified these categories ‘H. In Section 2 we recall this result, and use it to show
that we may assume H to have a very specific shape (see Theorem 2.17).

The category of A-modules can be seen as sitting inside two consecutive copies
of H (see Theorem 2.13). In their proof that the representation dimension of tilted
algebras is at most three, Assem, Platzeck, and Trepode used the fact that in their
case (where instead of from H one tilts from a module category of a hereditary
algebra H) one can separate the two parts of the module category of A (in the
different copies of mod H) by a complete slice, which comes from projective or
injective H-modules. Unfortunately, in our case H does not have any projective
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or injective objects, and a complete slice as in the tilted case does not exist.
However we still have some control over the border between the two copies: It
consist of a P;-family of tubes.

The crucial idea here is to choose a wing inside each non-homogeneous tube
(see Construction 3.6). While this is not as good as the complete slices in the
tilted case (there any map from the first to the second part of the module cate-
gory factors through the complete slice) it still gives us some control: We show
in Proposition 4.8 that the wings (in some sense) force vector bundles over the
weighted projective line into a much smaller and better understood subcategory,
which is equivalent to the category of vector bundles over the projective line Pj.

We then show that, starting with a module in the second copy of H and approx-
imating with injective modules and elements of the wings, we can find restrictions
to which line bundles over P}, will occur in the cone (Proposition 6.8). This will
help us show that there is a finite collection of line bundles over P; (see Con-
struction 5.1), which is enough to make up for the non-perfect border between the
copies of H.

2. NOTATION AND BACKGROUND

Throughout this paper we assume k to be an algebraically closed field. All
categories occurring are assumed to be k-categories with finite dimensional Hom-
spaces.

The main examples of such categories occurring in this paper are the category
of modules over a finite dimensional algebra A, denoted by mod A, the category of
coherent sheaves over a weighted projective line X, denoted by coh X (as introduced
by Geigle and Lenzing [9], see also the brief summary of properties in Theorem 2.15
below), and their bounded derived categories D°(mod A) and D?(coh X).

For an object X we denote by add X the category of all direct summands of
finite direct sums of copies of X.

For two subcategories A and B of some category we denote by A V B the full
subcategory whose objects are direct sums of one object in A and one object in

B.
Representation dimension.

2.1. Definition (Auslander [2]). Let A be a finite dimensional algebra. Then the
representation dimension of A is

repdim A = min{gld End,(G) | G € mod A generator and cogenerator}.

Here gld End, (G) denotes the global dimension of the endomorphism ring, and G
being a generator and cogenerator means that all projective and injective modules
are in add G.

A generator cogenerator G realizing the minimum in the definition above is
called Auslander generator.

Auslander’s main motivation for defining this homological invariant is the fol-
lowing result.

2.2. Theorem (Auslander [2]). Let A be a finite dimensional algebra. Then
repdim A < 2 if and only if A has finite representation type.
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We should also mention the following two more recent results which show that
the representation dimension is reasonably well behaved.

2.3. Theorem (Iyama [14]). Let A be a finite dimensional algebra. Then
repdim A < oo.

2.4. Theorem (Rouquier [24]). Let A be the exterior algebra of an n-dimensional
vector space, n € N>y. Then

repdim A =n + 1.

In particular any nonnegative integer different from 1 occurs as the representation
dimension of some algebra.

Since our aim in this paper is to show that certain algebras have representation
dimension at most 3 we will need to find a generator cogenerator G such that
gld End(G) < 3. Our method of verifying this (once we have a candidate G) is
the following.

2.5. Lemma (implicit by Auslander, explicit in [8]). Let A be a non-semisimple
finite dimensional algebra, and G € mod A a generator and cogenerator, and n €
N>y. Then the following are equivalent:

(1) gld Enda(G) < n, and

(2) for any X € mod A there is an ezact sequence

Gn72 _ Gn73 to GO - X
with G; € add G, such that the induced sequence
Homy (G, Gp—2) e Homy (G, X) — 0

is also exact. (In this situation we say that X has a G-resolution of length
n—2.)

2.6. Remark. The sequence
Gpo2— Gp-s Go—+ X

being a G-resolution just means that the rightmost map is a right G-approximation
of X, the next map is induced by a right G-approximation of the kernel of the
first, and so on.

In particular, for n = 3 the claim “X has a G-resolution of length 1”7 just means
that the kernel of a right G-approximation of X is in add G.

Quasi-tilted algebras.

2.7. Definition. An abelian category H is called hereditary if Ext3 (X,Y) = 0 for
any X,Y € H. (Here Ext?, is understood as the Yoneda-Ext, see [26].)

2.8. Definition. An object T of a hereditary category H is called tilting object if
(1) Exty,(T,T) = 0, and
(2) any object X € H with Homy (T, X) = 0 and Ext}, (T, X) = 0 is the zero
object.

Now we are ready to define quasi-tilted algebras.
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2.9. Definition (Happel, Reiten, and Smalg [13]). A finite dimensional k-algebra
A is called quasi-tilted if A = Endy(T) for some tilting object T' in a hereditary
category H. It is called tilted if moreover H can be chosen to be the module
category of a hereditary algebra.

For tilted algebras the result we wish to prove here in the more general setup
of quasi-tilted algebras has been shown by Assem, Platzeck, and Trepode.

2.10. Theorem ([1]). Let A be a tilted algebra. Then repdim A < 3.

Derived categories of hereditary categories. Since tilting induces a derived
equivalence RHom(7T, —) between the categories involved we need to understand
the derived categories of hereditary categories. The following description of these
derived categories is well-known.

2.11. Theorem. Let H be a hereditary category. Then the derived category of 'H
18

D*(H) = ViezHli).
That is, any object in D°(H) is the direct sum of stalk complexes.

2.12. Remark. Assume A is derived equivalent to H. Then we fix one derived
equivalence, and identify A with its image under

A DVA) — D'(H).

In particular, if H is hereditary, A can be described by saying which shifts of
which objects in ‘H lie in A.

In the situation of a derived equivalence induced by tilting this amounts to the
following;:

2.13. Theorem ([13, Section 1.4]). Let H be a hereditary category, T' € H a tilting
object, and A = Endy(T'). Via the equivalence RHomy (T, —) the module category
of A is identified with

mod A = Facy TV (Suby, 77)[1].

Classification of hereditary categories with tilting objects. Definition 2.9
suggests that the first step towards understanding quasi-tilted algebras might be
studying possible hereditary categories H. Happel has classified all such categories
which contain a tilting object up to derived equivalence.

2.14. Theorem (Happel [11]). Let ‘H be a connected hereditary category with a
tilting object. Then H s derived equivalent to one of the following:

(1) mod H, where H is a finite dimensional hereditary k-algebra, or
(2) coh X, where X is a weighted projective line (introduced by Geigle and Lenz-
ing, see [9]).

Thus our investigation may be split up into these two cases. It will be shown at
the end of this section that we may actually restrict ourselves to (a special subcase
of) the second case.
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Coherent sheaves over a weighted projective line. A weighted projective
line X is the projective line P} together with a finite set of points py,...,p, € Pi,
and, for each of these, a weight w; € N>,. For background on weighted projective
lines and the coherent sheaves on them see [9]. We recall only the results needed
here.

We denote by VB and tor the full subcategories of coh X in which the objects
are vector bundles and torsion sheaves, respectively.

2.15. Theorem (see [9]). Let X be a weighted projective line. Then cohX =
VBV tor, that is any coherent sheaf on X is the direct sum of a vector bundle and
a torsion sheaf. Moreover Homx (tor, VB) = 0 = Exty (VB, tor).

The category of torsion sheaves decomposes as a coproduct of categories tor =
HPEP;IC tor,. Forp & {pi1,...,p} the category tor, is the uniserial finite length

category with one simple object (= finite length modules over k[[x]] — its Auslander-
Reiten quiver is a homogeneous tube). Forp = p; the category tor, is the connected
uniserial finite length category with w; simple objects, that is the category having
a tube of rank w; as its Auslander-Reiten quiver.

The structure of VB depends on the weights:

o If there are at most two weights, or if there are three weights (wq,2,2),
(2,3,3), (2,3,4), or (2,3,5) for some wy, then VB consists of only one
Auslander-Reiten component.

o [f the weights are (2,2,2,2), (2,3,6), (2,4,4), or(3,3,3), then the weighted
projective line is called tubular. In this case VB = V,cqVB,. Moreover,
VB, = tor for any q € Q, and for ¢; < g we have Homx(VB,,,VB,, ) =0 =
Ext}(VB,,, VB,,).

e In all other cases VB is wild.

The case H derived equivalent to coh X. The hereditary categories ‘H which
are derived equivalent to coh X for some weighted projective line X have been
studied by Lenzing and Skowroriski in [18]. They obtained the following classifi-
cation.

2.16. Theorem. Let H be hereditary and derived equivalent to cohX for some
weighted projective line X. Then H is equivalent to one of the following (they are
described as indicated in Remark 2.12, that is by saying which shifts of which coher-
ent sheaves on X are in H, when H is identified with a subcategory of D(coh X)):

(1) mod H for a tame hereditary algebra H,

(2) tors[—1] V VB V torpi\s for some S C P,. Here and in the following
tors = Hpes tor, denotes the category of all torsion sheaves corresponding
to one of the points in S.

(3) (Vgens,VBg) VtorV (Veeq., VBy[1]) for some x € R, if the weights of X are
(2,2,2,2), (2,3,6), (2,4,4), or (3,3,3).

By Theorem 2.10 any tilted algebra has representation dimension at most three.
Therefore we may disregard the first case above.

Now assume we are in the third case above, and T' € (V4eq.,VB,) V tor V
(Vqeq-, VBy[1]) is a tilting object. Then there is & € Q such that T' € (Vgeq.,VB,)V
tor V (Vgeq.,VBy[1]) & coh X, where the equivalence is given in [20]. Hence any
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algebra tilted from a hereditary category coming up in the third case above is also
tilted from a hereditary category coming up in the second case above.

Hereditary categories derived equivalent to module categories. Now we
investigate the first case of Happel’s Theorem (Theorem 2.14). That is we have a
hereditary category derived equivalent to a module category.

If the hereditary category is derived equivalent to the module category of a
representation finite algebra it is easy to see that it again is the module category
of a representation finite algebra. The endomorphism ring of any tilting module
(even of any tilting complex in the derived category) is representation finite, that
is has representation dimension at most two. Hence we may disregard that case.

If the hereditary category is derived equivalent to a tame hereditary algebra
then it is also derived equivalent to a weighted projective line (see [9, 5.4.1]).
Hence this hereditary category is treated in Theorem 2.16, and we do not need to
treat it here.

Finally assume we have a hereditary category H which is derived equivalent to
the module category of a wild hereditary algebra H. If H contains a projective
object, then by [10] it is equivalent to the module category of a hereditary algebra.
Hence by Theorem 2.10 the endomorphism ring of any tilting object has repre-
sentation dimension at most three. Therefore we may assume that H does not
contain any projective objects. Then, by [10, Proposition 4.8(2)], H is equivalent
to one of the following, where P, R, and Z denote the preprojective, regular, and
preinjective components of mod H respectively.

e Z[-1]VP VR, or

e RVIVP.
In the first case one can see that for any tilting object T" we have 77"T € PV R
for n sufficiently big, and hence Endy(7T") = Endgy (77"T) is tilted. In the second
case dually 7"T" € R V T for sufficiently large n, and again Endy(T) is tilted.

Conclusion (of this section). We have shown that we may restrict ourselves
to the following case.

2.17. Theorem. Assume A is connected, quasi-tilted, and not tilted. Then there is
a weighted projective line X and a subset S C P}, such that A is the endomorphism
ring of a tilting object in the hereditary category

H = torg|[—1] V VBV torpls, (2.1)
defined inside the derived category of coh X.

3. CONSTRUCTION OF AN AUSLANDER GENERATOR I

From now on we assume the following setup (we may do so by Theorem 2.17
above).

We have a weighted projective line X with weights wy, ..., w, attached in points
P1, ..., pr, Tespectively. We have a hereditary category H inside D’(cohX) as in
formula (2.1) above. We have a tilting object T € H. Equivalently, T is a tilting
complex in D’(coh X) which is of the form

r=@Priet.e @ 17,

pes pePI\S
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with TPL € tory[—1], Typ € VB, and Tf € tor,. Note that Tyg # 0, since otherwise

there would be no maps or extensions from 7" to any of the homogeneous tubes.
We set A = Endpsonxy(7). We will think of modA as a subcategory of

D’(coh X) as indicated in Remark 2.12 and Theorem 2.13. In particular we identify

projA = add T, and
inj A = add vT.

(The first identification is done since RHom(T,—) maps addT to projA, the
second follows from the first by applying v, see Remark 3.3).

3.1. Remark. We will always work inside the triangulated category DP(cohX).
However, we will make use of the following three abelian subcategories:

e coh X,
o H,
e mod A.

Therefore it is always necessary to specify which of the abelian structures we are
talking about when using terms like “short exact”, “kernel”, or “cokernel”.

3.2. Remark. With the identification of Theorem 2.13 we have

mod A = {X € D’(mod A) | Hom ps(moa (A, X[i]) = 0Vi % 0}
= {X € D"(cohX) | Homps(conxy (T, X [i]) = 0Vi # 0},

and similarly

mod A = {X € D’(cohX) | Hom po(con ) (X, vT'[i]) = 0Vi # 0}.

3.3. Remark. Here and throughout the paper v denotes the Serre functor of
D’(cohX), and 7 = v[—1] the Auslander-Reiten translation in D’(cohX). Note
that 7 coincides with Auslander-Reiten translation in coh X and H whenever the
objects in question are in these categories. The Auslander-Reiten translation in
mod A will be denoted by 7,.

Wings. The rest of this section is devoted to wings in the tubes of torsion sheaves
over X. Taking these wings as part of our Auslander generator is the crucial idea
of our proof of Theorem 1.1.

3.4. Definition (see [22]). Let T be a tube of rank w. A wing in T is the direct
sum of all subquotients in T of one fixed indecomposable object of length w — 1.

The following picture illustrates this concept on the example of a tube of rank
four. Here the indecomposable direct summands of a wing correspond to the
vertices in the triangle in the following picture (where the left and right side are
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identified):

1
O
1

NN SN SN

c----0----0 -

We now want to choose a wing in every non-homogeneous tube in tor. The
following lemma ensures that we can do this in such a way that the part of T" in
that tube also lies in the wing.

3.5. Lemma. With the notation as above, let p € Py \'S. Then there is a wing
W, in tor, such that T € add W,.

Proof. Since Tyg # 0, by [9] there is a simple object S € tor, such that Homy (Tyg, S) #
0. We choose W, to be the wing such that 7=5 ¢ add W,,.

Note that Homx(7vs, X) # 0 for all indecomposable X € tor, which are not
in the wing not containing S. Hence Exty (X, Tys) = Homx(Tys, 7X) # 0 for all
indecomposable X &€ tor, which are not in the wing W,,. Hence TpR caddW,. O

This lemma tells us that it is always possible to make the following construction.

3.6. Construction. For i € {1,....r} we choose a wing W), in tor,, such that
o if p; € S then vT € add W, and
o if p; ¢ S then T, € add W,
This is possible by Lemma 3.5 and its dual.
Now we set W = @._, W,,,, and choose W such that

add W = mod A N add W.

Remember that we identify mod A with a subcategory of the derived category of
coh X, so the intersection above makes sense.

4. THE INFLUENCE OF THE WINGS

Before we collect the remaining parts of our Auslander generator in Section 5
and we get to the more technical parts of the proof, we use this short section to
explain why we want the wings to be summands of the Auslander generator, and
how these wings affect resolutions.

For comparison we also remark how the complete slice, in Assem, Platzeck, and
Trepode’s proof (in [1]) that the representation dimension of tilted algebras is at
most three, behaves opposed to the wings we have here.

4.1. Definition. For an object X in a triangulated category 7 we denote by
X+t ={T €T |Homy(X,T[i]) = 0Vi}

the complete orthogonal of X. (Here “complete” refers to the fact that we don’t
just require the morphisms to certain shifts to vanish.)
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4.2. Remark. For a tilted algebra and a complete slice S as in the proof in [1],
the category S+ is zero.

Here we are interested in the category completely orthogonal to the wings.
While it does not vanish, as in the tilted case, the following theorem shows that
it is coh P}, a category we know comparatively well.

4.3. Theorem. With the notation above we have
W =W~ Db(cohP}),
and the equivalence is induced by an equivalence W+ N cohX ~ coh P}.

4.4. Notation. We will identify along the equivalence of Theorem 4.3. That is,
we will see coherent sheaves on P} as special coherent sheaves on X.

Proof of 4.3. We first construct a partial tilting object V' € add W tube by tube
as follows: .

Assume first p; € S. Then add W, = {X € addW,, | Ext'(X,vT,,) = 0} (see
Remark 3.2). Since vT),, € add W, one easily verifies that the longest summand

of the wing and all its subobjects are in add Wpi. We choose V), to be the direct
sum over these w; — 1 objects.
Dually one can construct Vj, for p; € Pp \' S. Then we set V = @;_, V. It is

clear that Exty(V,V) = 0, and by construction V' € add W.

Since Exty(V,V) = 0, by applying [12, Corollary 2.8] repeatedly, one obtains
that V+ N coh X is a hereditary category with a tilting object.

Since this hereditary category contains a Pj-family of homogeneous tubes, and
there are no maps from these tubes to anything else, the classification results (The-
orems 2.14 and 2.16) imply that V- Ncoh X ~ coh P, Extending this equivalence
to shifts we obtain V+ ~ D’(cohP}).

Finally note that any indecomposable direct summand of W occurs in a short
exact sequence, where the other two terms are direct summands of V. Thg/efore
V+ C W+, Since moreover addV C addW C addW we have V+ = W+ =
W, 0

Now remember that mod A lies in H V H[1], and that the largest (and least
controlled) part of H is VB. Since the wings lie in tor there are no maps to VB,
and (as coherent sheaves over X) the approximation of an object in VB[1] by W is
a universal extension. Hence we have to understand such universal extensions.

4.5. Definition. Let A be an abelian category, and X,Y € A. A short exact
sequence Y’ —— F —— X is called a universal extension of X by objects in
add Y, if
(1) Y € addY, and
(2) any other short exact sequence Y/ —— F —» X with Y” € addY is a
pushout of the first short exact sequence.
It is the minimal universal extension if moreover

(3) the map F — X is right minimal, or, equivalently, the sequence does
not contain a direct summand of the form Y” —— Y” —»» 0 with Y # 0.
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The minimal universal extension of X by objects in addY is unique up to iso-
morphism. Whenever we refer to the universal extension we mean the minimal
one.

Dually one defines universal extensions of objects in add X by Y.

Note that if dimy Ext! (X, Y") < oo (so in particular in all categories we consider
in this paper) then minimal universal extensions exist.

4.6. Remark. For ‘H = mod H with H a hereditary algebra, and the complete
slice DH € DP(H) as in [1], for any X € H the universal extension of an object
in add DH by X lies in add DH.

Here we look at universal extensions with wings, and where they lie.

4.7. Construction. Let X € VB. We denote by E(X) the universal extension (in
coh X) of objects in add W by X.

4.8. Proposition. For any X € VB we have E(X) € VBp: V add W. Here VBp1

denotes the vector bundles over Py, which are identified with certain vector bundles
over X wia the equivalence of Theorem 4.3.

Proof. Let E(X )y and E(X ) be the vector bundle and torsion part of E(X),
respectively. Then we can construct the following pushout diagram in coh X.

E(X)tor W’

! 1

X E(X) - W
i I O

K E(X )y — W

Here W’ € add W, and K and W' are kernels. Since W' and W" are sub- and
factor objects of W' they are in add W. By the snake lemma the kernel of the
left vertical map is a subobject of E(X )., hence a torsion sheaf. Since X has
no non-zero torsion sheaves as subsheaves we have X = K, and the pushout is
actually exact. Therefore also the top horizontal map is an isomorphism.

Now we decompose W' = W¢ & WH’D}C\S with W5 € tors and W]};i\s € toTpl\s.
We decompose W’ and W similarly.

We now factor the map above as indicated in the following diagram.

X E(X) — Wé@w}éi\s
exact 1

X ? e W @ Wi
exact l

K

E(X)yp = W5 @ E/”I}C\S

Since mod A is closed under quotients in H it is also closed under quotients in the

tubes tor, with p € P, \ S. Hence Wi & P € add W. Since the top sequence
k
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in the diagram is a universal extension this means W, and hence

!/
=0.
PI\S
Now note that (dually to the argument above) mod A is closed under subobjects
in the tubes tor, with p € S. Hence E(X)ior = W/ = WS € add W.

It remains to see that E(X)y € VBp1. Note that Hom pp (con x) (W, VBJi]) = 0 for

alli # 1. Hence it suffices to show Extk (W, E(X)) = 0. Let B(X) —— H —= W
be any element of this Ext-group. We construct the pushout as indicated in the
following diagram.

_ "
}C\S - IP’i \S?

X E(X) - W

| ] e

X H w”
We——W

Since W” is an extension of W by W' we have W” € addW. Since the upper
sequence is a universal extension it is a direct summand of the middle horizontal

sequence. In particular the short exact sequence F(X)—— H —»» 1% splits.
Therefore Exty (W, E(X)) = 0, and hence E(X)ys € VBN W+ = VBp: . O

5. CONSTRUCTION OF AN AUSLANDER GENERATOR II

We now collect the remaining, more technical summands of our Auslander gen-
erator. The reason for these parts to be necessary are the following limitations of
Proposition 4.8 opposed to Remark 4.6.

e The universal extension can (and will) include line bundles on P}, and
e Proposition 4.8 only applies to VB, not to all of H.

Line bundles orthogonal to the wings.
5.1. Construction. With E as in Construction 4.7 we set
dmin = min{i € Z |Op1 (i) is isomorphic to a direct
summand of E(Tyg)}
dmax = max({i € Z |Op: (i) is isomorphic to a direct
summand of E(Tys ® 7*Tys)} U {dmin + 1})

By choosing a special equivalence in Theorem 4.3 we may (and will for the rest of
the paper) assume dp,;, = 0. We then write d = dppax-

We set .
L= 0 (i).
i=0

To see that this is a legal ingredient for the Auslander generator we need the
following result.

5.2. Lemma. The line bundle Oﬂm}ﬂ(i) is in mod A if and only if i > 0.
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Proof. Since (’)]P;Ilc is a direct summand of an extension of Tyg with an object in

add W it is in mod A. Now recall (Theorem 2.13) that mod A N H is closed under
quotients. Then the “if”-part of the lemma follows from the fact that Op: (i) €
Facy OHD}C for i > 0.

For the converse assume Op1 (i) € mod A. Again by Theorem 2.13 this means
that Op: (1) € Facy T. In particular there is non-zero map Tyg — Ot (7). Since
Hom(/ﬂv/,(’)ﬂmi(i)[l]) = 0 this map factors through Tyg —— E(Tyz). Now i > 0
follows from the convention in Construction 5.1 and the fact that there are no
non-zero maps Opi (i) — Op1 (j) for ¢ > j. O

Left and right ends.

5.3. Construction. We choose ? and 7 such that
add T = {X € modA | 7o X € mod A Ntor[—1]}, and

addv T = {X € modA | 7, X € mod A N tor[l]}.

Choosing such a T is possible since mod A N tor[—1] = ] s Facior, (-1 TI{J has
H

pES
only finitely many indecomposables. Dually it is possible to choose T'.

«— —
Note that T'€ add T" and T" € add T'.
The Auslander generator.

5.4. Theorem. Let 'H be a hereditary category and T € H tilting as described at
the beginning of this section. Then for the generator cogenerator

— —~ —
G=ToLoWovT
of mod End(T") we have
gld End(G) = 3,

and hence
repdim End(7") < 3.

5.5. Remark. One easily sees that in the setup of Theorem 5.4 above all homo-
geneous tubes in tor lie in mod End(7"). Hence End(T) is representation infinite,

and we have
repdim End(7) = 3.

We conclude this section by pointing out that Theorem 5.4 implies Theorem 1.1.

Proof of Theorem 1.1. Clearly it suffices to prove the theorem for connected alge-
bras. By Theorem 2.10 and Auslander’s characterization of finite representation
type the theorem holds for tilted algebras. In Theorem 2.17 we have seen that
any quasi-tilted algebra which is not tilted comes up in the setup of Theorem 5.4,
hence has representation dimension at most three. Finally, either by Remark 5.5
or by [13, Corollary 11.3.6], any quasi-tilted non-tilted algebra is representation
infinite, and hence has representation dimension exactly three. U

Since Assem, Platzeck, and Trepode have shown (see [1, Theorem 4.1]) that any
connected Laura-algebra which is not quasi-tilted has representation dimension at
most three, the following is an immediate consequence of Theorem 1.1.
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5.6. Corollary. Let A be a Laura-algebra. Then the representation dimension of
A is at most three.

6. PROOF OF THEOREM 5.4

By Lemma 2.5 we have to show that any A-module has a G-resolution of length
1, that is that the kernel of its right minimal add G-approximation is again in
add G. We may restrict to indecomposable modules.

Clearly we may disregard the case of an indecomposable module in addG. In
particular we do not have to look at indecomposable modules in mod A N tor[—1]
or mod A N tor[l]. The following three cases remain:

e An indecomposable module in mod A NVB,
e an indecomposable module in mod A N tor, or
e an indecomposable module in mod A N VB[1].

We will gather the result for these three cases in Propositions 6.5, 6.7, and 6.10.
Before we distinguish the cases we have the following general observations on

. . — <—
approximations by vT and T'.

6.1. Lemma. Assume X is an indecomposable A-module, and X ¢ add vT. Then
é
any map v T —— X factors through an injective module.

Proof. Assume X € modA is indecomposable, such that mA(y?,X ) # 0.
(Here Hom, denotes morphisms modulo such morphisms that factor through in-
jective modules. Dually Hom, denotes morphisms modulo ones factoring through
projective modules.) By the Auslander-Reiten formula (see for instance [4])

— N
Hom, (7yvT , 7y X) = Homp(v T, X) # 0.
~——
€mod ANtor[1]

Since mod A N tor[1] is closed under successors also 7, X € mod A N tor[l], and
—_
hence X € addvT'. g

6.2. Lemma. Assume there is an exact sequence of A-modules
GG e x
with G',G" € add G, C € mod A N coh X and such that the map
Hom(L & W & VT, G") LN Hom(L & W & VT, X)
1s onto. Then G -resol.dim X < 1.

Before we can prove this, we need the following two results.

6.3. Lemma. Let X € mod A N (tor[—1] V VBV tor). Then QX € add T. (Here
Q denotes the syzygy as A-module.)
H

Dually, for X € mod A N (tor V VB[1] V tor[l]) we have BX € vT .
Proof. Let X € mod AN (tor[—1]VVBV tor). Let {2 be an indecomposable direct
summand of QX. By the Auslander-Reiten formula

Homy (1A, 7AQ2X) = D Ext!(QX, 72 Q') = D Ext*(X, 7, Q)
= D Hom(X[—2], AQ).
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(Here D denotes the duality Hom(—, k).) If 7oQ" = 0 then €’ € add T as claimed.
Otherwise all the terms above are non-zero. Hence X € tor and 7,§Y € tor[—1].

Therefore Q' € add? as claimed also in this case.
Clearly the second part of the lemma is dual to the first. O

6 4. Lemma Let X ——» ? be a right minimal epimorphism in mod A, with

T EaddT ThenXGaddT
Du_c)tlly, if VT X is a left minimal monomorphism in mod A, with T’

add T', then X € addyT.

Proof. Before we start the actual proof we need the following observation on A-
modules in tor|[—1]:
The indecomposable objects in mod A N tor[—1] are partially ordered by

X <Y e—3x 2% x, 2 ... 2 x Py

with Xy, ..., X,, indecomposable.

This follows from the facts that the indecomposable objects in mod ANtor,[—1] all
lie in the wing add v~',, and that modules in different tubes are incomparable.

Now we prove the lemma. We may assume T is indecomposable, and the map
X — T’ not split epi. We assume further, contrary to the claim of the lemma,

that X = X’ @ X” with X’ indecomposable and X’ ¢ add T. This setup gives
rise to a short exact sequence

K_’X/@X/,_”?,

without any split components. In particular Extl((f, K') «<«— Hom(K", T?) # 0
for any indecomposable summand K’ of K. Hence K € mod A N tor[—1].

We may assume this sequence to be maximal in the following sense: For any
K’ € mod A Ntor[—1] and X" € mod A such that there is an exact sequence

K/ X/ @ X/// s ?/
there is at least one indecomposable direct summand of K’ which is no proper
successor of any indecomposable summand of K.
Now we denote by K ——— ¥~ K — 77 K the almost split sequence starting
in K (if K is not indecomposable we add up the almost split sequences). Then

we obtain the following diagram, where the center map exists by the factorization
property of almost split sequences.

K X/ @ XI/ o ?/
K VK — 17K
The right square gives rise to a short exact sequence

- / " — T
VTK— XX &7 K—T".

By general Auslander-Reiten theory (see [4]) we have ¥~ K € add T. Hence the
component 9~ K —— X’ is a radical map. We split off all direct summands of



16 Quasi-tilted algebras

¥~ K which are mapped isomorphically to a direct summand of the middle term
of the above sequence, and obtain a short exact sequence

K/ X/ @ X//l s ?/

with K’ a direct summand of ¢~ K. This contradicts the maximality of our choice
of K.

Therefore all direct summands of X have to be in add ?

The second part of the lemma is dual. O

Now we are ready to show Lemma 6.2.

Proof of 6. <2_ In the setup of the lemma we need to extend f such that also any
map from 7' to X factors through it. We do so in two steps. First we show that
we may assume f to be onto:

We take a projective cover 7" of C'. Its kernel (as A-modules) QC' is in add T
by Lemma 6.3.

We now have the following diagram

G" G / X - C
. /
PB
Gl/ G//l\ ‘ / / .
QC

where the map 7" —— X exists since 1" is projective, the map QC' —— Imy f
is the kernel morphism, and G" is the pullback of the square to its upper right.
By Lemma 6.4 we have G"” € add G. _

The central square can be seen as a short exact sequence. By setting G' = G'®T’
and G” = G" we obtain N

G L x

as in the lemma, but with the additional condition that f is an epimorphism of
A-modules.

Now we choose a right ?—approximation ?’ — X. Then we consider the
following pullback diagram.

& Gt x
I I ==
G G - T

By Lemma 6.4 we have G" € addG. Moreover the right square turns into the
short exact sequence

é/// é/ D ?/ o X
which is a (not necessary minimal) G-resolution of X. O

We now distinguish the three cases according to where indecomposable modules
could lie.
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Modules in mog ANVB. We assume X € mod ANVB. Then a right G-approximation
of X is a right (T @ L)-approximation.

We denote by H the trace of O]P’i in X as coherent sheaves on X. Hence, in
coh X, we have a short exact sequence

H—% X —

with Cy € coh X. Since H € Facy Opi and H € VB C ‘H we have H € Facy Opk C

mod A. Applying Hom(W, —) to a short exact sequence Ker (9];1 - H of
__ k

coherent sheaves over X one sees that Exty (W, H) = 0. Since H € VB this means

H € VBp:, and moreover since H & mod A we have that H is the direct sum of

copies of objects of the form Op: (i) with i > 0 (Lemma 5.2). In particular there

is a short exact sequence of coherent sheaves on X

with L and L” € add L, where the map L' —~ H can be chosen to be a right
L-approximation of H. Since all three objects are A-modules, this is also a short
exact sequence in mod A.

We now consider ¢ as a map of A-modules. We denote its kernel and cokernel
by K and C, respectively. N

Since ¢ is a monomorphism in coh X we have K € torg[—1]. Now let K be the
kernel of the composition L' —s H —— X of maps of A-modules. The following
diagram of A-modules shows that K is an extension of K by L”.

K H Imp ¢
K L Imy ¢
Ll/ L//

Since Exth (K, L") = 0 (because K € tors[—1] and L” € VB) we have K = K@ L.
Now we focus on the cokernel C'. Note that there is a triangle

K[1] LN Cone(t) — C — K|2].
——
=Cy
Since Cy € coh X the map h can only be non-zero on direct summands of C which
lie in tors. Hence C' € mod A N (coh X V torg[1]) = mod A N coh X.
Now the exact sequence

Kol L X - C

of A-modules satisfies the conditions of Lemma 6.2. Therefore we have shown

6.5. Proposition. Assume we are in the setup if Theorem 5.4, and X € mod AN
VB. Then G -resol.dim X < 1.
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Modules in mod A N tor. Now we assume X to be indecomposable in mod A N
tor, for some p € P,. We may assume that X ¢ add W,. As before we denote by
H the trace of O]P’i in X as coherent sheaves over X. Moreover we denote by Hj
the trace of W), in X. Note that H, is the trace of the unique longest summand

of W,. In particular it belongs to Facx (’)]p}v N Facx Wp.

6.6. Lemma. In the setup above H and Hy are in mod A Ntor,. Moreover Hy is
a subsheaf (as coherent sheaves over X) of H.

Proof. We have to distinguish two cases:

Case p € S: Then mod A is closed under subobjects in the tube. Hence H and
Hy are in mod A.

Case p € P\ S: Now all objects involved are in H, and H, Hy € mod A follows
from the fact that mod A is closed under factors in H.

The second claim follows from the fact that Ho € Facx Op:. 0

As before, by applying Hom(W, —) to a short exact sequence Ker ~—— Ogﬂ — H,
k

we see Ext' (W, H) = 0. Similarly Ext'(W, Hy) = 0. Finally we set_ﬁ = H/H,.
Applying Hom(W, —) to the short exact sequence Ho =—— H —~ H we see that
H is a torsion sheaf in coh P, = W+. Hence it has an L-resolution

OPIIC (d - l)n —_ OPIIc (d)n — H
for some n € N (as coherent sheaf over X).
Since Extl(OP}C (d), Hy) = 0 we obtain the following diagram,

H H - H

| |

Oy (d — 1)" —— Opy (d)" o

- H

and hence the short exact sequence

of coherent sheaves over X. Since all three objects are modules this is also a short
exact sequence in mod A.

Now we denote the kernel and cokernel of the map H —— X (in mod A) by K
and C', respectively. We obtain the following diagram, where L denotes the kernel
of the map to its right.

K H - C

\

Hy® O]pl — ImA L

Osi(d—1)" = Ops (d— 1)"
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As in the case X € mod A N VB one sees that K € tor,[—1] and C € tor,. In
particular the left vertical sequence splits. Hence we get an exact sequence

K @ Opi (d— 1)" = Hy@® Opy (d)" —+ X —=+ C

of A-modules. Any map from L or W to X factors through f. Moreover, by
ﬁ
Lemma 6.1 any map from v7T to X factors through an injective module, hence

through Wp, and hence through f. Therefore the following proposition follows
from Lemma 6.2.

6.7. Proposition. Assume we are in the setup of Theorem 5.4, and X € mod AN
tor. Then G -resol.dim X < 1.

Modules in mod ANVBJ[1]. Finally we assume X to be indecomposable in mod AN
ﬁ
VB[1]. We may assume that X ¢ addvT.

We start by approximating X by modules in add VT, By Lemma 6.1 is suffices
to approximate X by add vT". We denote such an approximation by f: vT" — X
and its cone by H. The following proposition gives a more precise location of H.

6.8. Proposition. Let X € mod A N VB[1] indecomposable, X ¢ addu?, and
let f: vT" —— X be a right minimal approximation by injective modules. Then
Cone(f) € VB[1], and Cone(f)[—1] € Suby 7*Tys.

We postpone the proof of this proposition to the end of the section. The fol-
lowing consequence of this proposition will be essential to the discussion here.

6.9. Corollary. Let H as above. Then

E(H[-1]) € add{Op (i) | i < d} V addW.
(For the definition of E(—) see Construction 4.7.)
Proof. By Proposition 4.8 we have

E(H[-1]) € add{Op (i) | i € Z} V add W.

Now let H[—1] —— 72T be a monomorphism in H, which exists by Proposi-
tion 6.8. Then it is also a monomorphism in coh X. This map can be extended
to the following diagram, where the rows are exact sequences of coherent sheaves
over X coming up in the definition of E(—).

H[-1] — E(H[-1]) — W'

I

Ty v B(1*Tyg)" ——r W”
By the snake lemma the kernel of the central vertical map is a subsheaf of the

kernel of the right vertical map. Hence it has finite length. Now the claim follows
from the fact that

E(r*Tys)" € add{Op; (i) | i < d} v add W
(which is part of the definition of d in Construction 5.1). O
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Now we ready to add a W—approximation to the V?—approximation f of X we
chose above. Note that any map W —— X that does not factor through f is
mapped to a nonzero map in Hom(f/v7 H). Conversely any map in Hom(W, H)
lifts to a map in Hom(/I/IV/,X), since Extl(/l/lv/, vT) = 0. Hence we may take the
W—approximation W' —— H and complete the following diagram.

H[-1] v — 1 )\( H
H[Hl] — E(H‘[l]) w JJI

This gives rise to the triangle
E(H[-1]) — vT' & W' —Lv X — B(H[-1))[1]

where any map from VT & W to X factors through f
Next we add an L-approximation L' — X. We obtain the following diagram,
where K is an object completing the lower triangle.

E(H[-1]) — vT" T w )‘( E(H[-1])[1]
E(H[-1]) K L E(H[-1])[1]
Since F(H|[—1]) and L’ are both in
add{Op; (i) | i < d} v add W

(by Corollary 6.9 and the construction of L below 5.1, respectively) this also holds
for K.
As before, the diagram turns into a triangle
K—vT'oW oL — X — KJ[1].
We now show that K" € mod A. To do so we have to see that any map from T’
to X factors through add L & W.
e For p € S there are no maps T,) — X.
e Applying Hom(—, X) to the triangle
Tyg — E(Tyg) — W — Tys[1]

one finds that the map Hom(F(Tyg), X) — Hom(7yg, X) is onto. Hence
(by construction of L and Proposition 4.8) any map from Tyg to X factors

through add L & W. s
e For p € P\ S we have T, € add V.

Therefore the first map in the following exact sequence (induced by the triangle
above) is onto.

Hom (T, vT' & W' @& L') —» Hom(T, X) ——
—— Hom(T, K[1]) — Hom(T, (vT' & W' & L')[1)).
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Since vT" ® W' @ L' € mod A the last term above vanishes, and therefore so does
Hom(T, K[1]). This shows K € mod A, and the triangle gives rise to a short exact
sequence
K— 1T eW &L — X
of A-modules.
Now we are done by Lemma 6.2.

6.10. Proposition. Assume we are in the setup if Theorem 5.4, and X € mod AN
VB[1]. Then G -resol.dim X < 1.

It remains to prove Proposition 6.8. We recall the claim for the convenience of
the reader.

6.8. Proposition. Let X € mod A NVB[1] be indecomposable, X ¢ add V?, and
let f: vT" —— X be a right minimal approximation by injective modules. Then
Cone(f) € VB[1], and Cone(f)[—1] € Suby 7*Tys.

Proof. We first show that f[—1], seen as a map in H, is a monomorphism. We
denote by K and I the kernel and image of f[—1] in H. Since (mod A)[—-1]NH =
Suby 7T we have I[1] € mod A. Since vT[—1] = 7T is a tilting object in H we
have that K € add 77. The triangle K[1] v’ I1] K|[2] therefore
comes from a short exact sequence

K[1] —— vT" — I[1]
in mod A, which is split, since K[1] € addvT = injA. By the assumption that f

is right minimal this means K = 0.
Hence we have a short exact sequence

7 X e H
in H, where as before H = Cone(f). In particular H € H[1].
We decompose H = Hyg @ Hyor with Hyg € VB[1] and Hior € torp}e\s[l]. Now
we denote the pullback in the following diagram (in H) by Y[—1].

1
T’ M Y[—-1] —> Hyor[—1]
H [ PB lsplit
—1
T’ »M» X[-1] — H[-1]
Since Y[—1] is a subobject of X[—1] we have Y € mod A. Note that since X is
assumed to be in VB[1] the objects Y and H,, have no common summands. Hence
fy is left minimal. We denote by K and C' the kernel and cokernel of the map fy
in mod A, respectively. Then we have a triangle
K[l — Hyoy — C — K|2].
~—
—Cone(fy)
Clearly C' and K|[2] cannot have any common direct summands, hence the map
Hyor — C' is left minimal. Therefore C' € torpi\s[1]. Since K[2] is the cone of

the map Heor — C we have K[2] € torp\s[1] V torp:\s[2]. But K € mod A, so
K e tor]p]le\s.
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We now denote the image of fy as i—morphism by Imy fy. Since Imy fy = OK
Lemma 6.3 says that Imy fy € addvT'. Singe) the inclusion Imy fy —— Y is left
minimal Lemma 6.4 implies that Y € addvT'.

Now, by Lemma 6.1, the map ¥ —— X factors through an injective module,
hence through f. Therefore the sequence 77" —— Y[—1] —> Hyor[—1] splits,
and hence Hy,, = 0.

For the proof of the second claim we apply Hom(—,72T) to the short exact
sequence 71" —— X|[—1] — H[—1] in H. We obtain

=0

i{om(TT', 7'2T5
-~ Ext! (7T, 7°T)

t
D Hom(7T, X[-1]) f—» DHom(rT,7T")

Since f is an injective approximation the map f* above is into, and hence Ext'(H[—1], 72T =
0. Now note that 727 is cotilting in H. Therefore this vanishing of Ext implies
H[—l] S SubH TQT.

Since H[—1] € VB there is a monomorphism H|[—1] —— 72Ty, & R in H, with
Ty € addTyg and R € torprs. We obtain the following diagram in H, where ¢
is the composition of the inclusion above with projection to the direct summand
Ty

Extl(H[—l], 72T)

Ex

7T)

H[=1] ——> Tmy

|

R—— 7Ty ® R — 72T
Since Kery ¢ is a subobject of R it is in torp:s. Therefore it admits no non-zero
maps to H[—1], and hence Kery, ¢ = 0. That shows H[—1] € Suby 7%Tys. O

Kery ¢
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