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The representation dimension of a finite dimensional algebra has been
introduced by Auslander in his Queen Mary College notes [1]. Rouquier
has shown ([8]) that the representation dimension of the exterior algebra of
an n-dimensional vector space is n + 1, thus giving the first example of an
algebra known to have representation dimension strictly larger than 3. To
do so, he proved that the representation dimension is bounded below by the
dimension of the stable module category plus two, and analyzed the latter
with the help of Koszul duality. In characteristic 2, the exterior algebra is just
kCn

2 , so Rouquier in particular has determined the representation dimension
of these algebras. He pointed out that his result implies the case p = 2 of
the following conjecture of Benson: The Loewy length of a block of a group
algebra in characteristic p is strictly larger than the p-rank of its defect group.

Here we generalize Rouquier’s result to group algebras of elementary
abelian groups. More precisely we will prove the following:

Theorem. Let k be a field of characteristic p, Cn
p the elementary abelian

group of order pn. Then

dim kCn
p -mod ≥ n− 1

One crucial idea of the proof of the p = 2 case in [8] is to transfer the
problem to commutative algebra with the help of Koszul duality. In con-
trast, we will work directly in the module category and show that certain
morphisms vanish in the stable category.

By Rouquier’s result mentioned above the following lower bound for the
representation dimension follows:

Corollary 1. Let k be a field of characteristic p. Then repdim kCn
p > n.

Following arguments due to Rouquier, we can deduce a lower bound for
the representation dimension of any block of a group algebra. The p-rank of
a group G is the maximal n, such that G has an elementary abelian subgroup
of order pn.
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Corollary 2. Let k be a field of characteristic p. Let G be a finite group, B
a non-semisimple block of kG and D a defect group of B. Then

repdimB > p -rank(D).

Finally, by an argument of Auslander, the representation dimension of
a self-injective algebra is bounded above by its Loewy length, that is the
minimal n such that Radn vanishes. Using this, Benson’s conjecture follows.

Corollary 3 (Benson’s conjecture). Let k be a field of characteristic p.
Let G be a finite group, B a block of kG, llB its Loewy length, and D a defect

group of B. Then

llB > p -rank(D).

In the first section we will recall the definitions and some basic properties
of the representation dimension (due to Auslander) and the dimension of a
triangulated category (due to Rouquier).

In the second section we explain the idea of the proof of the Theorem. We
will assume to have a module M generating (as will be defined in Section 1)
the stable module category in a finite number of steps. We will explain a
method to show that another object N is not in the category generated by M
in a fixed number of steps. To apply this method, we need to find a module
N with a certain chain of endomorphisms having a non-zero composition in
the stable module category, but such that every single endomorphism in the
chain annihilates all morphisms from M .

For an infinite field, we will in Section 3 explicitly find a module N and
endomorphisms meeting our requirements. More precisely, we will construct
a family of modules in such a way that we can, depending on M , choose an
adequate N (Proposition 11). We will show that this module N cannot be in
the category generated by M in to few steps. This provides the lower bound
for the dimension of the stable module category.

In the fourth section we will show that our result also holds for a finite
field. We look at the algebraic closure, where we may use the result for infinite
fields, and then see that everything actually happens in a finite extension of
the given field.

Finally, in Section 5, we will see that our result also induces a lower bound
for the representation dimension of any block of a group algebra. This implies
Benson’s conjecture.

Acknowledgements. This paper is part of the author’s PhD project. I
would like to thank Steffen Koenig for suggesting this subject and for many
helpful questions, comments, and suggestions.
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1. Definitions of the dimensions

Representation dimension:
Recall that the global dimension of an algebra, denoted by gld, is the maxi-
mum of the projective dimensions of the modules.

Definition. Let Λ be a finite dimensional algebra. Then the representation

dimension of Λ is defined to be

repdim Λ = min{gldEndΛ(M) |M generates and cogenerates Λ -mod}.

The representation dimension of a finite dimensional algebra has been
introduced by Auslander [1] in order to measure how far an algebra is from
being representation finite. He showed that an algebra is representation
infinite if and only if its representation dimension is at least three. To date,
no general method is known for calculating the representation dimension
of a given algebra, and in fact the only examples known by now to have
representation dimension greater than three are the exterior algebras ([8]) and
the algebras in the family considered by Krause and Kussin ([6]). However,
it has been shown by Iyama [5], that the representation dimension is always
finite.

Since we know the module category of Λ better than the one of EndΛ(M),
the following lemma may help us to understand the representation dimension.

Lemma 4 ([4, Lemma 2.1]). Let Λ be a non-semisimple algebra, let M ∈
Λ -mod be a generator and cogenerator, n ∈ N. Then the following are

equivalent:

1. gld EndΛ(M) = n

2. For every N ∈ Λ -mod there is an exact sequence

0 - Mn−2
- · · · - M0

- N - 0,

such that the induced sequence

0 - HomΛ(M,Mn−2) - · · · - HomΛ(M,N) - 0

is also exact.

Such a sequence will be called a universal M-resolution of N .

This means, that the representation dimension of a non-semisimple alge-
bra can also be defined to be the minimal n, such that there is a generator
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cogenerator M having the property that every module has a universal M -
resolution of length at most n− 2.

In order to get upper bounds for the representation dimension of some
algebra, one can choose a generator cogeneratorM and calculate the maximal
length of a universal M -resolution of a module. The following lemma is an
example of this technique.

Lemma 5 ([1, III.5, p.55], improved in [8, Proposition 3.9]). Let Λ
be self-injective. Then

repdim Λ ≤ ll Λ,

where ll Λ is the Loewy length of Λ.

Proof. Take M =
⊕

i Λ/Radi Λ. Let us denote for a moment the kernel of
the universal M -cover (that is the first morphism of the minimal universal
M -resolution) of a module N by ΩMN . Now note that in every step of the
resolution, the Loewy length of the module decreases by at least one, that
means ll Ωi+1

M N ≤ ll Ωi
MN−1. If N is projective then it is in addM , therefore

we may assume that llN < ll Λ. Putting this together we find ll Ωll Λ−1
M N = 0,

so Ωll Λ−1
M N = 0. Therefore repdim Λ ≤ ll Λ as claimed.

Alternatively, see [1, III.5, p.55], but note that if the Loewy length of the
module is ll Λ, then the module is projective, so this case can be excluded.

Dimension of a triangulated category: The notion of dimension of a
triangulated category has been introduced by Rouquier in [7].

Let T be a triangulated category, I ⊂ Ob T . Then let 〈I〉 be the full sub-
category of T of all direct summands of finite direct sums of shifts of objects
in I. For two subclasses I1, I2 ⊂ Ob T let I1 ∗ I2 be the full subcategory of
all extensions between them, that is the objects of I1 ∗I2 are exactly the M ,
such that there is a distinguished triangle M1

- M - M2
- M1[1]

in T with Mi ∈ Ii. Now set

I1 � I2 = 〈I1 ∗ I2〉

and

〈I〉0 = 0,

〈I〉1 = 〈I〉

〈I〉i+1 = 〈I〉i � 〈I〉 .

Definition. The dimension of a triangulated category T is the minimal d
such that there is an object M ∈ T with T = 〈M〉d+1.
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The following lemma is an immediate consequence of this definition:

Lemma 6 ([7, Lemma 3.4]). Let S
F- T be a triangle functor between

two triangulated categories. Assume any object in T is a direct summand of

an object in the image of F. Then

dim T ≤ dimS.

Here we will only be looking at the case T = Λ -mod of the stable module
category of a self-injective algebra Λ. Since short exact sequences in Λ -mod
become triangles in Λ -mod, any N having an M resolution of length n is
contained in 〈M〉n+1. Therefore we have the following lemma:

Lemma 7 ([8, part of Proposition 3.6]). Let Λ be a non-semisimple

self-injective algebra. Then

repdim Λ ≥ dim Λ -mod+2.

In particular this shows that the Theorem implies Corollary 1.

2. Outline of the proof the Theorem:

Let k be a field of characteristic p, V an n-dimensional k-vector space. Let

Λ = S(V )/(vp | v ∈ V )

be the symmetric algebra modulo all p-th powers. Then Λ ∼= kCn
p .

We will use the following lemma to get a lower bound for the dimension
of Λ -mod:

Lemma 8 ([6, Lemma 2.3] and [7, Lemma 4.11]). Let T be a triangu-

lated category and let

H1
f1- H2

f2- · · ·
fn−1- Hn−1

fn−1- Hn

be a sequence of morphisms between cohomological functors T op - Ab.

For every i, let Ii be a subcategory of T closed under shifts and on which fi

vanishes. Then f1 · · ·fn−1 vanishes on I1 � · · · � In−1.

Proof. This can easily be shown by induction on n. See [6] or [7].

To make use of it, we let M ∈ Ob(Λ -mod) such that M realizes the
minimal d in the definition of dim Λ -mod, so 〈M〉dim(Λ -mod)+1 = Λ -mod. We
will find a module N , depending on M , and morphisms fi : N - N such

that Hom(−, N)
fi∗- Hom(−, N) is 0 on 〈M〉 but f1 · · ·fn−1 6= 0. Thus, by

the above lemma, 〈M〉n−1 cannot be the entire stable category. Therefore
dim(Λ -mod) + 1 > n− 1.
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3. Proof of the Theorem in the case k is infinite

In this section we assume the field k to be infinite. Whenever we are talking
about open or closed sets we are referring to the classical Zariski topology.

Lemma 9. Let Y ⊂ mod-Λ be a finite set of right Λ-modules. Then there is

an open, nonempty subset U ⊂ V , such that for any u ∈ U , any y ∈ Y ∈ Y,

and any 1 ≤ s < p we have

yu = 0 ⇒ y · Rads Λ ⊂ Y us.

Proof. Fix 1 ≤ s < p and Y ∈ Y. Any v ∈ V induces a linear map

ρs
v : Y - Y : y - yvs.

Now we can find a set with the desired property for our fixed s and Y :

Us,Y = {v ∈ V | rk ρs
v maximal}.

By choosing a basis for V and Y , the maps ρs
v induce a polynomial map

kdim V ∼= V - Endk Y ∼= kdim Y ×dimY .

We then compose this map with taking subdeterminants of size r, where r is
the maximal rank in the definition of Us,Y above. This results in polynomial
maps kdimV - k, such that Us,Y is just the set where not all of these
polynomials are zero. Thus Us,Y is open and obviously it is non-empty.

Now fix u ∈ Us,Y . Let {ai | 1 ≤ i ≤ A} be a basis of Ker ρ1
u, complement

it to a basis {ai, bj | 1 ≤ i ≤ A, 1 ≤ j ≤ B} of Ker ρs
u, and finally to a basis

{ai, bj, cl | 1 ≤ i ≤ A, 1 ≤ j ≤ B, 1 ≤ l ≤ C} of Y .
Let v ∈ V . The rank of ρs

u is maximal, so in particular rk ρs
u+εv ≤ rk ρs

u

for any ε. Fix 1 ≤ i ≤ A. Therefore, for all ε, the tuple

(aiρ
s
u+εv, c1ρ

s
u+εv, . . . , cCρ

s
u+εv)

is linearly dependent. Since aiu = 0, for ε 6= 0 the tuple

(aiρ
s
v, c1ρ

s
u+εv, . . . , cCρ

s
u+εv)

also is linearly dependent. But the set of all ε such that it is linearly depen-
dent is closed (the subdeterminants of

(
aiρ

s
v, clρ

s
u+εv

)
are polynomials in ε),

hence it has to be all of k. Therefore, especially (aiρ
s
v, clρ

s
u | 1 ≤ l ≤ C) is

linearly dependent, so aiρ
s
v ∈ 〈clρ

s
u | 1 ≤ l ≤ C〉. But the vs generate Rads Λ

as a k-vector space, since s is strictly smaller than p.
Finally set U =

⋂
Y ∈Y

⋂p−1
s=1 Us,Y .
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Lemma 10. Let X ⊂ Λ -mod be a finite set of Λ-modules. Then there is an

open, nonempty subset U ⊂ V , such that for any u ∈ U , any ϕ ∈ HomΛ(X,Λ)
with X ∈ X , and any 1 ≤ s < p we have

ϕu = 0 ⇒ ϕ · Rads Λ ⊂ HomΛ(X,Λ)us.

Proof. Set Y = {HomΛ(X,Λ) | X ∈ X} in Lemma 9.

Proposition 11. Let X ⊂ Λ -mod be a finite set of Λ-modules. Let u ∈ U
of Lemma 10, N = Λup−1. Then, for any X ∈ X and any f ∈ Radp−1 Λ,

any composition X - N
·f- N factors through Λ -proj.

Proof. Fix X ∈ X . Since N is a submodule of Λ, we may identify

HomΛ(X,N) = {ϕ ∈ HomΛ(X,Λ) | ϕ(X) ⊂ N}

= {ϕ ∈ HomΛ(X,Λ) | ϕ(X) ⊂ Λup−1}

= {ϕ ∈ HomΛ(X,Λ) | ϕ(X)u = 0}

Let ϕ ∈ HomΛ(X,N), that is ϕ ∈ HomΛ(X,Λ) with ϕu = 0. Then, by
Lemma 10, ϕf ∈ HomΛ(X,Λ)up−1.

The projective cover of N is induced by the endomorphism up−1 of Λ.
Therefore, the maps X - N factoring through a projective module are
exactly the elements of HomΛ(X,Λ)up−1.

Proposition 12. Let v ∈ V \ {0}, N = Λvp−1. Then the composition

N -- hdN ∼= k ∼= SocN- - N

does not factor through Λ -proj.

Proof. Let {v1, v2, . . . , vn} be a basis of V , v1 = v. Then the composition
above is (up to a scalar) multiplication with

∏
i6=1 v

p−1
i . Let f be any map

Λ - N . It is defined by the image of 1Λ in N ⊂ Λ, which we will also call
f . Now assume that the following diagram commutes.

N

∏
i6=1 v

p−1
i - N

Λ
?

∩

f
-

The image of vp−1 has to be the same on both ways, that is vp−1f =
∏

i v
p−1
i .

Therefore f −
∏

i6=1 v
p−1
i is a multiple of v. Since f ∈ N , f is also a multiple

of v. So
∏

i6=1 v
p−1
i would be a multiple of v, but that is not true in Λ.

Therefore the morphism cannot factor through Λ -proj.
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Proof of the Theorem for infinite fields. Let M be a Λ-module realizing the
minimal d in the definition of the dimension of the stable module category.
Let X = {M,fM}, where f is the cosyzygy functor, which is the shift in
the stable category. Then choose u ∈ U as in Lemma 10, and complement it
to a basis {u1, . . . un} of V with u1 = u. Let N = Λup−1. Then we have the
following sequence of cohomological functors Λ -mod - k -mod.

HomΛ(−, N)
·u

p−1

2- HomΛ(−, N) · · ·
·u

p−1

n- HomΛ(−, N)

Its composition is nonzero by Proposition 12. So by Lemma 8 we only need

to show that HomΛ(fiM,N)
·u

p−1

j - HomΛ(fiM,N) is zero for any i ∈ Z and
any 2 ≤ j ≤ n.

The following diagrams have short exact rows and commute for any f ∈ Λ.

N- - Λ -- Λ/(up−1) Λ/(up−1)-
·u - Λ

·up−1
-- N

N

·f
?
- - Λ

·f
?

-- Λ/(up−1)

·f
?

Λ/(up−1)

·f
?

-·u - Λ

·f
? ·up−1

-- N

·f
?

Therefore fN ∼= Λ/(up−1), f(Λ/(up−1)) ∼= N and f(
·f- ) ∼=

·f- . So
there is a commutative diagram

HomΛ(fiM,N)
·up−1

j - HomΛ(fiM,N)

HomΛ(fi+2nM,f2nN)

∼=

? f
2n(·up−1

j )
- HomΛ(fi+2nM,f2nN)

∼=

?

HomΛ(fi+2nM,N)

∼=

? ·up−1
j - HomΛ(fi+2nM,N)

∼=

?

By choosing n appropriately we can get i+ 2n ∈ {0, 1}, so f
i+2nM ∈ X and

the claim follows from Proposition 11.

4. The case of a finite field

Now let k be finite, k an algebraic closure. Denote by Λ = k⊗k Λ the induced
algebra. For any Λ-module X let X = k⊗kX ∈ Λ -mod, and for X ⊂ Λ -mod
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let X = {X | X ∈ X}. Whenever we are talking about an extension field k̂

of k let Λ̂, X̂ and X̂ be the obvious variations of the above.

Lemma 13. Let X ⊂ Λ -mod be finite. Then there is a finite extension k̂ of

k and u ∈ V̂ such that any ϕ ∈ HombΛ(X̂, Λ̂) with X ∈ X , and any 1 ≤ s < p
we have

ϕu = 0 ⇒ ϕ · Rads Λ̂ ⊂ HombΛ(X̂, Λ̂)up−1.

Proof. By Lemma 10 there is u ∈ V such that for any ϕ ∈ HomΛ(X,Λ) and

any 1 ≤ s < p we have ϕu = 0 ⇒ ϕ·Rads Λ ⊂ HomΛ(X,Λ)us. Choose k̂ finite

over k such that u ∈ V̂ . Since k ⊗bk
HombΛ(X̂, Λ̂) = HomΛ(X,Λ) ([3, 29.5]),

we may identify HombΛ(X̂, Λ̂) with the subset of morphisms in HomΛ(X,Λ)

mapping X̂ to Λ̂. Therefore, for any ϕ ∈ HombΛ(X̂, Λ̂) with ϕu = 0, we

have ϕ ·Rads Λ̂ ⊂ HomΛ(X,Λ)us∩HombΛ(X̂, Λ̂) = HombΛ(X̂, Λ̂)us. The right

equality holds because Λ̂ is a direct summand of Λ as Λ̂-module.

Proposition 14. Let X ⊂ Λ -mod be finite, u and k̂ as in Lemma 13, and set

N = Λ̂up−1. Then, for any X ∈ X and any f ∈ Radp−1 Λ̂, any composition

X̂ - N
·f- N of Λ̂-morphisms factors through Λ̂ -proj.

Proof. This is just the proof of Proposition 11, replacing the reference to
Lemma 10 by a reference to Lemma 13.

Proposition 15. Let X ⊂ Λ -mod finite, u and k̂ as in Lemma 13, and set

N = Λ̂up−1. Then, for any X ∈ X and any f ∈ Radp−1 Λ̂, any composition

X - N
·f- N of Λ-morphisms factors through Λ -proj.

Proof. Any Λ-morphism ϕ : X - N lifts to a Λ̂-morphism ϕ̂ : X̂ - N
as indicated in the following diagram.

N
up−1

i - N

X̂

ϕ̂

6

- Λ̂

66

X

ϕ

-

-

The dashed arrow now exists by Proposition 14 making the square commu-
tative, so the composition factors through Λ̂. Clearly this is a projective
Λ-module.
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We note that Proposition 12 does not depend on the field at all. To see
that the morphism is non-zero in Λ -mod, not just in Λ̂ -mod, we need to
recall the following lemma.

Lemma 16. Let Λ ⊂ Λ̂ be finite dimensional algebras. Assume Λ̂ is projec-

tive as Λ-module and a direct summand of Λ̂⊗Λ Λ̂ as (Λ̂, Λ̂)-bimodule. Then

restriction induces an injective map HombΛ(X, Y ) - HomΛ(X, Y ).

Proof. Assume a Λ̂-morphism ϕ : X - Y vanishes in HomΛ(X, Y ). Then
it factors through a finite number of copies of Λ, as indicated in the following
diagram.

X
ϕ - Y

Λn

-

-

Let Λ̂
- ι-��

π
Λ̂ ⊗Λ Λ̂ be the maps inducing the direct sum decomposition

of Λ̂ ⊗Λ Λ̂. Tensoring the above diagram with Λ̂ we find the triangle in
the following diagram. The rest of the diagram commutes since tensoring
commutes with direct sums.

Λ̂ ⊗bΛ X ======= X
ϕ - Y ======= Λ̂ ⊗bΛ Y

Λ̂ ⊗Λ Λ̂ ⊗bΛ X

ι⊗ 1
?

== Λ̂ ⊗Λ X
1 ⊗ ϕ- Λ̂ ⊗Λ Y == Λ̂ ⊗Λ Λ̂ ⊗bΛ Y

π ⊗ 1
6

Λ̂n

-

-

Therefore ϕ also vanishes in HombΛ(X, Y ).

Corollary 17. Let k̂ be a finite extension field of k, v ∈ V̂ . Then the

composition ψ : Λ̂vp−1 - k̂ - Λ̂vp−1 does not factor through a projective

Λ-module.

Proof. Since k is a finite field the extension is separable. Therefore, by [3,

Corollary 69.8] k̂ is a direct summand of k̂⊗k k̂ as (k̂, k̂)-bimodule. Tensoring
with Λ we find that the assumptions of Lemma 16 are satisfied.

Proof of the Theorem for finite fields. The argument is the same as the one
in the proof of the Theorem for infinite fields at the end of Section 3, with
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references to Propositions 11 and 12 replaced by references to Proposition 15
and Corollary 17 respectively. However, when we choose M as before and set
X = {M,fM}, we need to check that X̂ is indeed {M̂,fbΛM̂}, or, in other

words, that taking cosyzygies and tensoring with k̂ commutes. This is the
case because tensoring with k̂ is exact and k̂⊗Λ is projective over itself.

5. Applications

The applications here are obtained by applying the ideas of [8] to the more
general result.

Proposition 18 (implicit in [8, Theorem 4.9]). Let H ≤ G be finite

groups. Then

dim kG -mod ≥ dim kH -mod .

Proof. We have the exact functors

res : kG -mod - kH -mod and

ind : kH -mod - kG -mod .

Since both of them map projective modules to projective ones there are
induced triangle functors kG -mod -� kH -mod. By Lemma 6, it suffices
to show that every kH-module is a direct summand of a module in the image
of res. But kH is a direct summand of kG as kH-kH-bimodule, so 1kH -mod

is a direct summand of res ◦ ind.

Corollary 19. Let G be a finite group, k a field of characteristic p, such

that p devides the order of G. Then

ll kG ≥ repdim kG ≥ dim kG -mod+2 > p -rank(G).

Proof. The first inequality is Lemma 5, the second one is Lemma 7. The
third inequality follows from the Theorem and Proposition 18.

Proposition 20 ([8, Proposition 4.7]). Let G be a finite group and B a

block of kG. Let D be a defect group of B. Then dimB -mod = dim kD -mod.

The proof is similar to the one of Proposition 18. See [8].

Corollary 21. Let G be a finite group, B a non-semisimple block of kG,

char k = p. Let D be a defect group of B. Then

ll(B) ≥ repdimB ≥ dimB -mod+2 = dimD -mod+2 > p -rank(D).
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