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Abstract. We give a lower and an upper bound for the representation di-
mension of a quantum complete intersection.

1. Introduction

In [Au1], Auslander introduced the representation dimension of an Artin algebra
in order to study algebras of infinite representation type. He showed that a non-
semisimple algebra is of finite type if and only if its representation dimension is
exactly two, whereas it is of infinite type if and only if the representation dimension
is at least three.

For more than three decades no general method for computing the representation
dimension was known, and it was even unclear if this dimension could exceed three.
A negative answer to the latter would imply that the finitistic dimension conjecture
holds (cf. [IgT]). However, in 2006 Rouquier showed in [Ro2] that the representation
dimension of the exterior algebra on a d-dimensional vector space is d + 1, using
the notion of the dimension of a triangulated category (cf. [Ro1]). In particular,
there exist finite dimensional algebras of arbitrarily large representation dimension.
Other examples illustrating this were subsequently given in [KrK] and [Op1].

In this paper, we study the representation dimension of quantum complete in-
tersections, a class of algebras originating from work by Manin (cf. [Man]) and
Avramov, Gasharov and Peeva (cf. [AGP]). In particular, under some assumptions
we show that the representation dimension of such an algebra is strictly greater
than its codimension.

2. Representation dimension

Let Λ be an Artin algebra, and denote by modΛ the category of finitely generated
left Λ-modules. The representation dimension of Λ, denoted repdim Λ, is defined
as

repdim Λ def= inf{gldimEndΛ(M) | M generates and cogenerates mod Λ},
where gldim denotes the global dimension of an algebra. A priori we see that the
representation dimension might be infinite, but Iyama showed in [Iya] that it is
finite for every Artin algebra. Auslander himself showed that the representation
dimension of a selfinjective algebra is at most its Loewy length.

When computing the representation dimension of the exterior algebras, Rouquier
used the notion of dimensions of triangulated categories, a concept he introduced
in [Ro1]. As we will also use this notion when computing a lower bound for the
representation dimension of a quantum complete intersection, we recall the defin-
itions. Let T be a triangulated category, and let C and D be subcategories of T .
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We denote by 〈C〉 the full subcategory of T consisting of all the direct summands
of finite direct sums of shifts of objects in C. Furthermore, we denote by C ∗ D the
full subcategory of T consisting of objects M such that there exists a distinguished
triangle

C → M → D → C[1]

in T , with C ∈ C and D ∈ D. Finally, we denote the subcategory 〈C ∗ D〉 by C ¦D.
Now define 〈C〉0 and 〈C〉1 to be 0 and 〈C〉, respectively, and for each n ≥ 2 define
inductively 〈C〉n to be 〈C〉n−1 ¦ 〈C〉. The dimension of T , denoted dim T , is defined
as

dim T def= inf{d ∈ Z | there exists an object M ∈ T such that T = 〈M〉d+1}.
From the definition, we see that the dimension of a triangulated category is not

necessarily finite. However, the following elementary result provides a method for
computing an upper bound in terms of dense subcategories.

Proposition 2.1. [Ro1, Lemma 3.4] If F : S → T is a functor of triangulated
categories whose image is dense in T , then dim T ≤ dimS.

We will use this result to show that for any quantum complete intersection of
codimension n, there exists a chain of n subalgebras and a corresponding chain of
n−1 inequalities bounding the representation dimension from below. When proving
both this and the main results, the triangulated category we use is the stable module
category of the algebra. Recall therefore that when Λ is a selfinjective algebra,
its stable module category, denoted mod Λ, is defined as follows: the objects of
mod Λ are the same as in modΛ, but two morphisms in mod Λ are equal in mod Λ
whenever their difference factors through a projective Λ-module. The cosyzygy
functor Ω−1

Λ : mod Λ → mod Λ is an equivalence of categories, and a triangulation
of mod Λ is given by using this functor as a shift and by letting short exact sequences
in mod Λ correspond to triangles. Thus mod Λ is a triangulated category, and its
dimension is related to the representation dimension of Λ by the following result.

Proposition 2.2. [Ro2, Proposition 3.7] If Λ is a non-semisimple selfinjective
algebra, then repdim Λ ≥ dim(mod Λ) + 2.

We end this section with the following lemma. It gives a lower bound for the
dimension of the stable module category of a selfinjective algebra, in terms of certain
subalgebras.

Lemma 2.3. Let A and B be selfinjective Artin algebras. If there exist algebra
homomorphisms

A
i−→ B

π−→ A

such that πi is the identity and such that B is a projective A-module, then
dim(mod A) ≤ dim(mod B).

Proof. Every B-module is an A-module via the map i. Moreover, if a map in mod B
factors through a projective B-module, then it factors through a projective A-
module since B is A-projective. Therefore the map i induces a functor F : mod B →
mod A, and this is clearly a functor of triangulated categories. Now let M be an
object in mod A. Then M is a B-module via the map π, hence every object in
mod A belongs to the image of F . The result now follows from Proposition 2.1. ¤

3. Quantum complete intersections

Throughout the rest of this paper, let k be a field and n a positive integer. Let
a1, . . . , an be a sequence of integers with au ≥ 2 for all u, and for each pair (i, j)
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of integers with 1 ≤ i < j ≤ n, let qij be a nonzero element of k. Denote by Λ the
algebra

Λ = k〈X1, . . . , Xn〉/({Xau
u }n

u=1, {XiXj − qijXjXi}1≤i<j≤n),

and by xi the image of Xi in Λ. This algebra is finite dimensional of dimension∏n
u=1 au and Loewy length 1+

∏n
u=1(au−1), and a quantum complete intersection

of codimension n. Namely, it is the quotient of the quantum symmetric algebra

k〈X1, . . . , Xn〉/(XiXj − qijXjXi for 1 ≤ i < j ≤ n)

by the quantum regular sequence xa1
1 , . . . , xan

n . Furthermore, these algebras are
Frobenius; the codimension two argument in the beginning of [BeE, Section 3]
transfers to the general situation. In particular, these algebras are selfinjective.

The class of quantum complete intersections contains some well known algebras.
For example, when qij = 1 for 1 ≤ i < j ≤ n we obtain the truncated polynomial
ring

k[X1, . . . , Xn]/(Xa1
1 , . . . , Xan

n ),
which is a finite dimensional commutative complete intersection. Moreover, when
au = 2 for all u and qij = −1 for 1 ≤ i < j ≤ n, then the resulting quantum
complete intersection is just the exterior algebra on kn.

As mentioned in the introduction, the notion of quantum complete intersections
originates from work by Manin (cf. [Man]), who introduced the concept of quan-
tum symmetric algebras. These algebras were used by Avramov, Gasharov and
Peeva in [AGP] to study modules behaving homologically as modules over com-
mutative complete intersections. In particular, they introduced quantum regular
sequences of endomorphisms of modules, thus generalizing the classical notion of
regular sequences. In [BEH] a rank variety theory was given for quantum complete
intersections satisfying certain conditions, and in [BeE] the Hochschild cohomology
and homology of these algebras were studied.

We now prove the first of the main results. Given any subset {i1, . . . , it} of
{1, . . . , n}, let Λi1,...,it denote the subalgebra of Λ generated by xi1 , . . . , xit . Thus
Λi1,...,it is the codimension t quantum complete intersection we obtain when “for-
getting” the variables Xi not in the sequence Xi1 , . . . , Xit .

Theorem 3.1. Let {i1, . . . , in−1} be any subset of {1, . . . , n} of size n− 1. Then

dim(mod Λi1) ≤ dim(mod Λi1,i2) ≤ · · · ≤ dim(mod Λi1,...,in−1) ≤ dim(mod Λ).

Proof. For any t ≤ n there are algebra homomorphisms

Λi1,...,it−1 → Λi1,...,it → Λi1,...,it−1

whose composition is the identity. Moreover, the middle term is free as a module
over Λi1,...,it−1 . Namely, it is isomorphic to

⊕ait−1
j=0 (Λi1,...,it−1)x

j
it
. The inequalities

now follow from Lemma 2.3. ¤

We end this section with a result giving an upper bound for the representation
dimension of a quantum complete intersection.

Theorem 3.2. The representation dimension of Λ is at most 2n.

Proof. The algebra Λ is Zn-graded, where the degree of xi is the ith unit vector
(0, . . . , 1, . . . , 0) in Zn. We prove by induction on n that if Λ is a quantum com-
plete intersection of codimension n, then there exists a finitely generated graded
Λ-module M such that the following hold:

(i) Λ is a direct summand of M ,
(ii) the global dimension of EndΛ(M) is at most 2n,
(iii) all the simple EndΛ(M)-modules are one-dimensional.
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The theorem will then follow from (i) and (ii).
If n = 1, then Λ is of the form k[X]/(Xa). In this case, define M by M =⊕a
i=1 k[X]/(Xi). Then it is well known that (i), (ii) and (iii) hold for M . Next

let n ≥ 1, and suppose that the above claim holds for every quantum complete
intersection of codimension at most n. Let Λ be a codimension n + 1 quantum
complete intersection

Λ = k〈X1, . . . , Xn+1〉/({Xau
u }n+1

u=1, {XiXj − qijXjXi}1≤i<j≤n+1),

and let Λ1,...,n and Λn+1 be the subalgebras generated by x1, . . . , xn and xn+1,
respectively. The algebra Λ1,...,n is Zn-graded, whereas Λn+1 is Z-graded.

Define a map g : Zn × Z→ k \ {0} by

((z1, . . . , zn), z) 7→
n∏

i=1

q−zzi
i,n+1.

It is straightforward to check that this is a homomorphism of groups. We now use
this homomorphism to define a “twisted” tensor product algebra Λ1,...,n ⊗g

k Λn+1

as follows. As a k-vector space Λ1,...,n ⊗g
k Λn+1 is just the usual tensor product

Λ1,...,n ⊗k Λn+1, but the multiplication is given by

(λ1 ⊗ γ1)(λ2 ⊗ γ2)
def= g(|λ2|, |γ1|)λ1λ2 ⊗ γ1γ2,

where λi and γi are homogeneous elements of Λ1,...,n and Λn+1, respectively. This
algebra is Zn+1-graded; the homogeneous elements of degree (z1, . . . , zn+1) are those
of the form λ ⊗ γ for homogeneous elements λ ∈ Λ1,...,n and γ ∈ Λn+1 of degrees
(z1, . . . zn) and zn+1, respectively. With this ring structure we see that the graded
algebras Λ1,...,n ⊗g

k Λn+1 and Λ are isomorphic.
By induction, there exist graded modules M1 ∈ modΛ1,...,n and M2 ∈ mod Λn+1

satisfying (i), (ii) and (iii) over Λ1,...,n and Λn+1, respectively. Consider the graded
module M1 ⊗g

k M2 over Λ1,...,n ⊗g
k Λn+1, where the scalar action is defined in the

natural way. It is not hard to see that Λ1,...,n ⊗g
k Λn+1 is a direct summand of

M1 ⊗g
k M2, and so this module satisfies (i). Now let Γ be its endomorphism ring

over Λ1,...,n ⊗g
k Λn+1. Then Γ ' Γ1 ⊗g

k Γ2, where Γ1 = EndΛ1,...,n(M1) and Γ2 =
EndΛn+1(M2) (note that Γ1 and Γ2 are graded, being endomorphism rings of finitely
generated graded modules). If S is a simple Γ-module, then it is a quotient of a
module of the form S1 ⊗g

k S2, where Si is a simple Γi-module for i = 1, 2. Since S1

and S2 are both one-dimensional, the module S must be isomorphic to S1 ⊗g
k S2.

Now given graded modules X ∈ modΓ1 and Y ∈ mod Γ2, the minimal projective
Γ1 ⊗g

k Γ2-resolution of X ⊗g
k Y is just the tensor product of the minimal projective

resolutions of X and Y over Γ1 and Γ2, respectively. This can be seen by the same
argument as in the classical case, i.e. when there is no twist. Therefore

pdΛ1,...,n⊗g
kΛn+1

S = pdΛ1,...,n
S1 + pdΛn+1

S2 ≤ 2n + 2.

In particular, we see that (ii) and (iii) hold for the module M1⊗g
kM2. This completes

the proof. ¤

4. Homogeneous quantum complete intersections

We now turn our attention to “homogeneous” quantum complete intersections
of codimension n. Throughout the rest of this paper, fix an integer a ≥ 2 and
a primitive ath root of unity q ∈ k. We denote by Λa

n the quantum complete
intersection

Λa
n = k〈X1, . . . , Xn〉/({Xa

u}n
u=1, {XiXj − qXjXi}1≤i<j≤n),

that is, all the defining exponents and commutators are equal to a and q, respec-
tively.
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Our aim is to show that the representation dimension of Λa
n is at least n + 1.

To do this, we show that given any object M ∈ mod Λa
n, there are objects {Ni ∈

mod Λa
n}n

i=1 and morphisms {Ni
fi−→ Ni+1}n−1

i=1 satisfying the following: for each i
the map

HomΛa
n
(−, Ni)

(fi)∗−−−→ HomΛa
n
(−, Ni+1)

vanishes on 〈M〉, whereas the composition (fn−1)∗ ◦ · · · ◦ (f1)∗ does not vanish on
mod Λa

n. We may then conclude from [Ro1, Lemma 4.11] that dim(mod Λa
n) ≥ n−1,

and then Proposition 2.2 gives repdimΛa
n ≥ n + 1.

The first step is the following lemma on the behavior of a linear combination of
the generators. Whenever we have a tuple α = (α1, . . . , αn) ∈ kn, we denote the
corresponding element α1x1 + · · ·+ αnxn ∈ Λa

n by σα.

Lemma 4.1. For any n-tuple α in kn, the following hold.
(i) σa

α = 0.
(ii) σa−1

α xi + σa−2
α xiσα + · · ·+ σαxiσ

a−2
α + xiσ

a−1
α = 0 for all i.

Proof. The first part of the lemma is just [BEH, Lemma 2.3]. To prove the second
part, assume that k is infinite, and let ε be any nonzero element of k. Then from
(i) the element (σα + εxi)a is zero, and expanding we get

0 = σa
α + ε




a−1∑

j=0

σj
αxiσ

a−1−j
α


 + ε2z,

where z is some element in Λa
n depending on ε. Therefore the set of all elements ε

in k for which the equality

0 = εz +
a−1∑

j=0

σj
αxiσ

a−1−j
α

holds contains all the nonzero elements. However, this set is closed in the Zariski
topology, and so since k is infinite the zero element must also belong to it. This
proves the second part of the lemma in the case when k is infinite. If k is finite,
let K/k be an infinite field extension. Then K ⊗k Λa

n is the quantum complete
intersection we obtain when allowing the scalars to be elements of K, with the
same defining relations as in Λa

n. Since (ii) holds in K ⊗k Λa
n by the above, it also

holds in Λa
n. ¤

In order to prove the main result, we also need the following two lemmas. These
are versions of [Op1, Lemma 9] and [Op1, Proposition 11], respectively.

Lemma 4.2. Suppose k is infinite, and let M ∈ mod Λa
n be a module. Then there

exists a non-empty open subset UM ⊆ kn such that for any α ∈ UM and any
m ∈ M , the following implications hold:

σαm = 0 ⇒ σβm ∈ σαM for all β ∈ kn

σa−1
α m = 0 ⇒

(
a−2∑

i=0

σi
ασβσa−2−i

α

)
m ∈ σa−1

α M for all β ∈ kn.

Proof. Let U1 be the set of all elements α ∈ kn such that the matrix representing
the linear map M

·σα−−→ M (multiplication with σα from the right) has maximal
rank. Then U1 is non-empty and open, by an argument similar to that of the proof
of [Op1, Lemma 9]. For an element α ∈ U1, choose a basis

{m1, . . . ,ms, w1, . . . , wt}
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of M such that σαmi = 0 and the set {σαw1, . . . , σαwt} is linearly independent.
Then for any nonzero ε ∈ k and any β ∈ kn, the set

{σ(α+εβ)mi, σ(α+εβ)w1, . . . , σ(α+εβ)wt}
is linearly dependent by the choice of α. Since σαmi = 0, the set

{σβmi, σ(α+εβ)w1, . . . , σ(α+εβ)wt}
is also linearly dependent for any nonzero ε ∈ k and any β ∈ kn. However, the set
of all ε ∈ k such that this set is linearly dependent is closed, and since it contains
all the nonzero elements it must be k itself. Consequently, for any element β ∈ kn

the set
{σβmi, σαw1, . . . , σαwt}

is linearly dependent, i.e. σβmi ∈ σαM . Therefore, given any elements α ∈ U1 and
m ∈ M , the first implication in the lemma holds.

Next define U2 to be the set of all elements α ∈ kn such that the matrix repre-

senting the linear map M
·σa−1

α−−−−→ M has maximal rank. Then U2 is non-empty and
open. An argument similar to that for U1 shows that given any elements α ∈ U2

and m ∈ M , the second implication in the lemma holds, since

σa−1
α σβ + σa−2

α σβσα + · · ·+ σασβσa−2
α + σβσa−1

α = 0

for any β ∈ kn by Lemma 4.1(ii). Now since U1 and U2 are non-empty open sets in
the Zariski topology, their intersection UM = U1 ∩ U2 is also non-empty and open,
and this is a set having the properties we are seeking. ¤

Lemma 4.3. Suppose k is infinite, and let M be a Λa
n-module. Then there exists

a non-empty open subset U ⊆ kn such that for any α ∈ U and any 1 ≤ p ≤ n, the
following hold.

(i) For every j ∈ Z, any composition

Λa
n/(σα)

·Pa−2
i=0 σi

αxpσa−2−i
α−−−−−−−−−−−−−→ Λa

n/(σa−1
α ) → Ωj

Λa
n
(M)

of left Λa
n-homomorphisms is zero in mod Λa

n.
(ii) For every j ∈ Z, any composition

Λa
n/(σa−1

α )
·xp−−→ Λa

n/(σα) → Ωj
Λa

n
(M)

of left Λ-homomorphisms is zero in modΛa
n.

Proof. For simplicity, we denote our algebra Λa
n by just Λ. First note that the maps

Λ/(σα)
·Pa−2

i=0 σi
αxpσa−2−i

α−−−−−−−−−−−−−→ Λ/(σa−1
α ) and Λ/(σa−1

α )
·xp−−→ Λ/(σα) of left modules are

well defined by Lemma 4.1(ii). Choose two non-empty open subsets UM and UΩΛ(M)

of kn satisfying Lemma 4.2, and consider their intersection U = UM ∩ UΩΛ(M).
Then U is also non-empty and open. Take any α ∈ U and let Λ/(σa−1

α )
g−→ N be a

homomorphism of left Λ-modules, where N is either M or ΩΛ(M). Furthermore, fix
any 1 ≤ p ≤ n, and let m = g(1+ (σa−1

α )). Then σa−1
α m = 0, and so by Lemma 4.2

there exists an element m′ ∈ N with the property that
(∑a−2

i=0 σi
αxpσ

a−2−i
α

)
m =

σa−1
α m′. This gives the factorization

Λ/(σα)
·Pa−2

i=0 σi
αxpσa−2−i

α //

1 7→σa−1
α

))TTTTTTTTTTTTTTTTTTT Λ/(σa−1
α )

g // N

Λ
1 7→m′

55kkkkkkkkkkkkkkkkkkk
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proving (i) in the case when j = 0, 1. A similar argument shows that (ii) holds for
j = 0, 1.

Consider the two diagrams

0 // Λ/(σα)

·Pa−2
i=0 σi

αxpσa−2−i
α

²²

·σa−1
α // Λ

·xp

²²

// Λ/(σa−1
α )

·xp

²²

// 0

0 // Λ/(σa−1
α )

·(−σα) // Λ // Λ/(σα) // 0

0 // Λ/(σa−1
α )

·xp

²²

·(−σα) // Λ

·Pa−2
i=0 σi

αxpσa−2−i
α

²²

// Λ/(σα)

·Pa−2
i=0 σi

αxpσa−2−i
α

²²

// 0

0 // Λ/(σα)
·σa−1

α // Λ // Λ/(σa−1
α ) // 0

which are commutative by Lemma 4.1(ii). Since the rows are exact, the mod-
ules Λ/(σα) and Λ/(σa−1

α ) are both 2-periodic with respect to the syzygy op-
erator, i.e. Ω2u

Λ (Λ/(σα)) ' Λ/(σα) and Ω2u
Λ (Λ/(σa−1

α )) ' Λ/(σa−1
α ) for any

u ∈ Z. Moreover, the commutativity of the squares shows that the two maps

Λ/(σα)
·Pa−2

i=0 σi
αxpσa−2−i

α−−−−−−−−−−−−−→ Λ/(σa−1
α ) and Λ/(σa−1

α )
·xp−−→ Λ/(σα) are also 2-periodic

with respect to the syzygy operator. Now let Λ/(σa−1
α )

g−→ Ωj
Λ(M) and Λ/(σα)

f−→
Ωj

Λ(M) be any maps, and choose an integer u ∈ Z such that Ωj+2u
Λ (M) is isomorphic

to either M or ΩΛ(M) in mod Λ. Then the diagrams

Λ/(σα)
·Pa−2

i=0 σi
αxpσa−2−i

α //

o
²²

Λ/(σa−1
α )

g //

o
²²

Ωj
Λ(M)

Λ/(σα)
·Pa−2

i=0 σi
αxpσa−2−i

α // Λ/(σa−1
α )

Ω2u
Λ (g) // Ωj+2u

Λ (M)

Λ/(σa−1
α )

·xp //

o
²²

Λ/(σα)
f //

o
²²

Ωj
Λ(M)

Λ/(σa−1
α )

·xp // Λ/(σα)
Ω2u

Λ (f) // Ωj+2u
Λ (M)

are commutative in mod Λ, where the vertical maps are isomorphisms. We have
already shown that the bottom compositions are zero in mod Λ, but then so are the
top compositions, since these are shifts of the bottom compositions. ¤

We are now ready to prove that the representation dimension of Λa
n is at least

n + 1 when n is even and the field k is infinite.

Proposition 4.4. If k is infinite and n is even, then repdimΛa
n ≥ n + 1.

Proof. As in the previous proof, we denote our algebra Λa
n by just Λ. Let α ∈ kn

be an n-tuple, and denote the element

xn−1

(
a−2∑

i=0

σi
αxnσa−2−i

α

)
xn−3

(
a−2∑

i=0

σi
αxn−2σ

a−2−i
α

)
· · ·x3

(
a−2∑

i=0

σi
αx4σ

a−2−i
α

)
x2

by wα. In the first (and longest) part of this proof, we show that the set of all
α ∈ kn such that wα does not belong to σαΛ+Λσα contains a non-empty open set.
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Fix any n-tuple α = (α1, . . . , αn) ∈ kn with α1 6= 0, and, for simplicity, denote
the corresponding σα and wα by σ and w, respectively. Every element λ ∈ Λ admits
a unique decomposition λ = Nx1(λ) + σRx1(λ), in which x1 does not occur in any
of the monomials in Nx1(λ). With this notation, we see that

w ∈ σΛ + Λσ ⇔ Nx1(w) ∈ σΛ + Λσ

⇔ Nx1(w) + hσ ∈ σΛ for some h ∈ Λ
⇔ Nx1(w) + hσ ∈ σΛ for some h ∈ Λ with Nx1(h) = h

⇔ Nx1 (Nx1(w) + hσ) = 0 for some h ∈ Λ with Nx1(h) = h,

where we may assume that the h occurring is homogeneous. Now note that the
degree of w is

(
n
2 − 1

)
a + 1. This implies that any homogeneous h satisfying the

above implications is of degree
(

n
2 − 1

)
a. If in addition Nx1(h) = h, i.e. if x1 does

not occur in any of the monomials in h, then hx1 = q−(n
2−1)ax1h = x1h. Writing

σ′ = σ − α1x1 we then get

hσ = α1hx1 + hσ′ = α1x1h + hσ′ = σh− σ′h + hσ′.

What we have so far gives

w ∈ σΛ + Λσ ⇔ Nx1 (Nx1(w) + hσ) = 0 with Nx1(h) = h

⇔ Nx1 (Nx1(w) + σh− σ′h + hσ′) = 0 with Nx1(h) = h

⇔ Nx1 (Nx1(w)− σ′h + hσ′) = 0 with Nx1(h) = h

⇔ Nx1(w)− σ′h + hσ′ = 0 with Nx1(h) = h,

where the last implication follows from the fact that x1 does not occur in any of
the monomials in Nx1(w) − σ′h + hσ′. Thus w belongs to σΛ + Λσ if and only if
Nx1(w) = σ′h− hσ′ for some homogeneous element h satisfying Nx1(h) = h.

Let λ be the element x2x
a−1
3 x4 · · ·xa−1

n−1xn, which has the same degree as w. For
any homogeneous element h of degree one less than that of w, the coefficient of λ
in σ′h − hσ′ is easily seen to be zero. Therefore w /∈ σΛ + Λσ if the coefficient of
λ in Nx1(w) is nonzero. Note that the set of tuples (α2, . . . , αn) ∈ kn−1 for which
this holds is open.

Consider the tuple (α1, 0, 1, . . . , 1, 0) ∈ kn, that is, we take as σ the element

σ = α1x1 + x3 + · · ·+ xn−1.

Define the element w′ ∈ Λ by

w′ = xn−1

a−2∑

i=0

σixnσa−2−i,

i.e. w′ is the “first part” of w. Since xnσ = q−1σxn, we see that

w′ = xn−1βσa−2xn

= β(q−1α1x1 + · · ·+ q−1xn−3 + xn−1)a−2xn−1xn

for some nonzero element β ∈ k. Using the equality Nx1(zy) = Nx1 (Nx1(z)y),
which holds for any elements z, y ∈ Λ, an induction argument gives

Nx1

(
(q−1α1x1 + · · ·+ q−1xn−3 + xn−1)i

)
=




i∏

j=1

(1− q−j)


 xi

n−1.
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Applying Nx1 to the above expression for w′ then gives

Nx1(w
′) = βNx1

(
Nx1

[
(q−1α1x1 + · · ·+ q−1xn−3 + xn−1)a−2

]
xn−1xn

)

= βNx1







a−2∏

j=1

(1− q−j)


 xa−1

n−1xn




= β′xa−1
n−1xn,

where β′ is some nonzero element in k. Now define w′′ by

w′′ = xn−3

(
a−2∑

i=0

σixn−2σ
a−2−i

)
· · ·x3

(
a−2∑

i=0

σix4σ
a−2−i

)
x2,

that is, the element w is given by w = w′w′′. By what we have just shown, the
equality

Nx1(w) = Nx1 (Nx1(w
′)w′′) = β′Nx1(x

a−1
n−1xnw′′)

holds. Now every monomial in w′′ containing xn−1 does not “contribute” to
xa−1

n−1xnw′′, therefore we may replace every σ in w′′ by σ − xn−1. Then if we
repeat the above process, we see that

Nx1(w) = δx2x
a−1
3 x4 · · ·xa−1

n−1xn = δλ,

where δ is some nonzero element in k. This shows that the coefficient of the mono-
mial λ in Nx1(w) is nonzero, i.e. w /∈ σΛ + Λσ.

Define the set V ⊆ kn by

V = {α ∈ kn | wα /∈ σαΛ + Λσα},
and consider the set

W = {(α2, . . . , αn) ∈ kn−1 | (α1, α2, . . . , αn) ∈ V for all 0 6= α1 ∈ k}.
We have just shown that W is open and non-empty, hence the subset

{(α1, α2, . . . , αn) ∈ kn | α1 6= 0 and (α2, . . . , αn) ∈ W}
of V is non-empty and open in kn.

Now let M be a Λ-module, and let U ⊆ kn be a non-empty open set having the
properties stated in Lemma 4.3. Since V contains a non-empty open subset, the
intersection U ∩V is not empty, and therefore contains an n-tuple α ∈ kn. For each
1 ≤ i ≤ n− 1, define maps fi ∈ mod Λ by

fi =





Λ/(σa−1
α )

·xn−i−−−→ Λ/(σα) when i is odd and i ≤ n− 3

Λ/(σα)
·Pa−2

i=0 σi
αxn+2−iσ

a−2−i
α−−−−−−−−−−−−−−−−→ Λ/(σa−1

α ) when i is even
Λ/(σa−1

α ) ·x2−−→ Λ/(σα) when i = n− 1.

By Lemma 4.3 each induced map (fi)∗ vanishes on the subcategory 〈M〉 of mod Λ.
However, the composition (fn−1)∗◦· · ·◦(f1)∗ does not vanish: if it did then the map
Λ/(σa−1

α ) ·wα−−→ Λ/(σα) would be zero in mod Λ. However, the injective envelope
of Λ/(σa−1

α ) is Λ/(σa−1
α ) ·σα−−→ Λ, whereas the projective cover of Λ/(σα) is the

projection Λ π−→ Λ/(σα). Therefore, if the map Λ/(σa−1
α ) ·wα−−→ Λ/(σα) was zero in

mod Λ, then it would factor in a commutative diagram

Λ/(σa−1
α )

·σα

²²

·wα // Λ/(σα)

Λ // Λ

π

OO

in modΛ. Since any homomorphism Λ → Λ is right multiplication with an element
in Λ, this would mean that there exists an element λ ∈ Λ such that wα = σαλ in
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Λ/(σα). In other words, the element wα would belong to σαΛ+Λσα, and this is not
the case since α ∈ V . From [Ro1, Lemma 4.11] we see that dim(mod Λ) ≥ n − 1,
and so Proposition 2.2 gives repdimΛ ≥ n + 1. ¤

Remark. It is also possible to prove Proposition 4.4 using [Op2, Theorem 1(b)].
However, as in the proof we just gave, the key ingredient in such a proof is deciding
whether or not wα belongs to σαΛ + Λσα.

Having established the case when n is even and the field k is infinite, we prove
the main theorem in this paper, namely the general case.

Theorem 4.5. The representation dimension of Λa
n satisfies

n + 1 ≤ repdim Λa
n ≤ 2n.

Proof. For the inequality n + 1 ≤ repdim Λa
n, we first assume k to be infinite. The

case when n is even was treated in Proposition 4.4, so it remains to give a proof
for odd n. To do so, we keep n even, and prove the inequality n ≤ repdim Λa

n−1.
We denote our algebra Λa

n by Λ. Furthermore, denote by Λ̃ the algebra Λ2,3,...,n,
where the notation is the same as that used in Theorem 3.1. In other words, the
algebra Λ̃ is the codimension n− 1 quantum complete intersection subalgebra of Λ
generated by x2, . . . , xn, and therefore isomorphic to Λa

n−1. In this notation, our
aim is to show that repdim Λ̃ ≥ n. We may assume n ≥ 4, since we know that the
representation dimension of the truncated polynomial ring k[X]/(Xa), which is of
finite representation type, is two.

Given an n-tuple α ∈ kn, define as before the corresponding element σα ∈ Λ,
and denote by wα the element

xn−1

(
a−2∑

i=0

σi
αxnσa−2−i

α

)
xn−3

(
a−2∑

i=0

σi
αxn−2σ

a−2−i
α

)
· · ·x3

(
a−2∑

i=0

σi
αx4σ

a−2−i
α

)
x2.

We showed in the proof of the previous result that the set

V = {α ∈ kn | wα /∈ σαΛ + Λσα}
contains a non-empty open subset. Now for any (n − 1)-tuple α̃ = (α2, . . . , αn) ∈
kn−1, define the element σ̃α̃ ∈ Λ̃ by σ̃α̃ = α2x2 + · · ·+ αnxn, and denote by w̃α̃ the
element

xn−1

(
a−2∑

i=0

σ̃i
α̃xnσ̃a−2−i

α̃

)
xn−3

(
a−2∑

i=0

σ̃i
α̃xn−2σ̃

a−2−i
α̃

)
· · ·x3

(
a−2∑

i=0

σ̃i
α̃x4σ̃

a−2−i
α̃

)

in Λ̃. Furthermore, consider the subset

Ṽ = {α̃ ∈ kn−1 | w̃α̃ /∈ σ̃α̃Λ̃ + Λ̃σ̃a−1
α̃ }

of kn−1. We show that this set contains a non-empty subset which is open.
Recall from the previous proof that the set

W = {(α2, . . . , αn) ∈ kn−1 | (α1, α2, . . . , αn) ∈ V for all 0 6= α1 ∈ k}
is non-empty and open in kn−1. Furthermore, let W ′ be the set of all (n − 1)-
tuples (α2, . . . , αn) in which α2 is nonzero. Since W ′ is non-empty and open, the
intersection W̃ = W ∩W ′ is also non-empty and open. Pick therefore an element
α̃ = (α2, . . . , αn) ∈ W̃ , let α ∈ kn be the n-tuple α = (α2, α2, . . . , αn), and define a
map f : Λ̃ → Λ by

xi 7→
{

x1 + x2 when i = 2
xi when i 6= 2.

Since f(xa
u) = 0 = f(xixj − qxjxi) for 2 ≤ u ≤ n and 2 ≤ i < j ≤ n, this is a

well defined algebra homomorphism. Note that f(σ̃α̃) = σα and that α belongs
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to V . Moreover, note that f(w̃α̃)x2 = wα, and so if w̃α̃ belongs to σ̃α̃Λ̃ + Λ̃σ̃a−1
α̃

then wα belongs to σαΛ + Λσa−1
α x2. However, from Lemma 4.1(ii) we see that

σαΛ + Λσa−1
α x2 is contained in σαΛ + Λσα, and we know that wα /∈ σαΛ + Λσα

since α ∈ V . Therefore w̃α̃ cannot belong to σ̃α̃Λ̃ + Λ̃σ̃a−1
α̃ , and this shows that

W̃ is a subset of Ṽ . Consequently, the set Ṽ contains a non-empty subset which is
open.

The arguments we applied at the end of the previous proof now shows that
repdim Λ̃ ≥ n. We have therefore proved that repdim Λa

n ≥ n + 1 for any n, when
the field k is infinite. However, when k is finite, the strategy applied in [Op1, Section
4] carries over to our algebra and shows that the inequality still holds. Therefore
repdim Λa

n ≥ n+1 regardless of whether the field k is infinite. This proves the first
inequality in the theorem, the other is Theorem 3.2. ¤

Corollary 4.6. Let Λ be a general quantum complete intersection, i.e.

Λ = k〈X1, . . . , Xn〉/({Xau
u }n

u=1, {XiXj − qijXjXi}1≤i<j≤n)

where au ≥ 2 and qij is nonzero. If there exists a subset {i1, . . . , it} of {1, . . . , n}
such that the subalgebra Λi1,...,it is a homogeneous quantum complete intersection
of the form Λa

t , then repdim Λ ≥ t + 1.

Proof. By Theorem 3.1 the inequality dim(mod Λa
t ) ≤ dim(mod Λ) holds, and in

the previous proof we showed that dim(modΛa
t ) is at least t − 1. Proposition 2.2

now gives repdim Λ ≥ t + 1. ¤

Remarks. (i) In the main results we have only considered homogeneous quantum
complete intersections of the form

k〈X1, . . . , Xn〉/({Xa
u}n

u=1, {XiXj − qXjXi}1≤i<j≤n),

that is, algebras where the defining exponents are all equal to a and where q is
a primitive ath root of unity. However, the proofs are also valid if we relax the
requirement that the defining exponents of the “even” indeterminates X2, X4, . . .
are equal to a, as long as we require that these exponents belong to {2, . . . , a}.
That is, the main results apply to quantum complete intersections of the form

k〈X1, . . . , Xn〉/({Xa
u}u odd, {Xav

v }v even, {XiXj − qXjXi}1≤i<j≤n),

where q is a primitive ath root of unity and av ∈ {2, . . . , a}. This is because the
key ingredient in the proof when n is even is to show that the coefficient of the
element x2x

a−1
3 x4 · · ·xa−1

n−1xn in

xn−1

(
a−2∑

i=0

σi
αxnσa−2−i

α

)
xn−3

(
a−2∑

i=0

σi
αxn−2σ

a−2−i
α

)
· · ·x3

(
a−2∑

i=0

σi
αx4σ

a−2−i
α

)
x2

is nonzero for every α belonging to a certain non-empty open subset of kn.
(ii) Work in progress by Avramov and Iyengar (cf. [AvI]) shows that the di-

mension of the stable derived category of a commutative local complete inter-
section of codimension c is at least c − 1. Consequently, the representation di-
mension of an Artin complete intersection is strictly greater than its embedding
dimension. In particular, they have shown that the representation dimension of
k[X1, . . . , Xn]/(Xa1

1 , . . . , Xan
n ) is at least n + 1 when ai ≥ 2.
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