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1. INTRODUCTION 3

1 Introduction

Connections
’ Homological algebra ‘
Algebraic topology ‘ ’ Algebraic geometry ‘ ’ Representation theory
simplicial homology; sheaf cohomology; extensions of modules
singular homology extensions of sheaves

Example 1.1. Let f: A— B be a surjective map, and ¢g: X — B any map.
One may ask if there is a map h: X — A such that g = f o h.

o If we are just talking about sets, and maps, the answer is “yes”: for any
x € X pick a preimage of g(x).

e If we are talking about vector spaces and linear maps the answer is also
“yes”: find a basis of X, then pick a preimage of g(x) for any basis element
x.

e If we are talking about abelian groups and linear maps the answer is
“sometimes”:

— Let A=7Z/(4), B=X =7Z/(2), and let f be the natural projection
and g the identity. Then there is no linear map h such that g = foh.

— Let A=7Z/(6), B=X =1Z/(2), and let f be the natural projection
and g the identity. Then there is a linear map h such that g = foh,
given by sending the residue class of 1 to the residue class of 3.

We will see: The obstruction to finding h is measure by the group Ext'. (In
the examples above we have Ext. =0, and Extz(Z/(2)Z/3) = 0, but

Exty(Z/(2),2/(2)) # 0.) vector spaces
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Chapter 1

General categories

2 Definition

In many situations in algebra (but also other parts of mathematics) we consider
some type of structures, say vector spaces, groups, rings, or similar. Typically
these are sets with some additional properties or structure. When studying
these kind of situations, there are two basic ingredients: We study the objects
having the desired structure themselves, and we study maps between objects
which preserve the structure (i.e. linear maps, group homomorphisms, ring ho-
momorphisms, ... ). The concept of a category axiomatizes this.

Definition 2.1. A category € consists of
e a class of objects Qb €';
e for any two objects X and Y a set of morphisms Home (X, Y);

e for any three objects X, Y, and Z, a multiplication map
Home (Y, Z) x Home (X,Y) —> Home (X, Z): (f,g9)—>fog.
such that
e for any object X there is a morphism idy € Home (X, X) such that

VY € € Vf € Homg(X,Y): foidy = f,
VY € O € Vf € Homy (Y, X): idx of = f.

5



6 CHAPTER 1. GENERAL CATEGORIES
e multiplication is associative, that is for any objects X,Y, Z, and W and
f € Homy(X,Y),9 € Homy (Y, Z), and h € Home (Z, W) we have
(hog)of=ho(gof)
Remark 2.2. Often Home is just all maps with some additional nice property.
Example 2.3. e ¥ = Set:

Ob Set = {sets}, and
Homget(X,Y) = {maps form X to Y}.

e ¥ =Gp:

b Gp = {groups}, and

Homgp (G, H) = {group homomorphisms G to H}.
e ¢ = Ab:

06 Ab = {Abelian groups}, and

Homap (G, H) = {group homomorphisms G to H}.
e ¢ = Top:

b Top = {topological spaces}, and
Homop (X,Y) = {continuous maps X to Y}.

For a ring R, ¥ = Mod R:

b Mod R = {right R-modules}, and
Hompioq (M, N) = { R-module homomorphisms M to N}.

For a ring R, ¥ = mod R:

Ob mod R = {finitely generated right R-modules}, and
Homyy,od (M, N) = Hompod r(M, N).

Observation 2.4. For a category €, one can define the opposite category €°P
by Qb €°P = 06 %, and Homeger (X,Y) = Home (Y, X), together with the mul-
tiplication rule f ogor g = g oy f.
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One simple toy example of categories is the following

Construction 2.5. Let (X, <) be a poset. The poset category ¢ x <) is defined

by
(%%(X,g) = X, and
{¥} ifz<y
Home, T,y) = z
Cg(x’g)( y) {@ otherwise,
where Lz 0¥ =12 whenever x < y < 2.

More generally, this construction works for a preordered set, that is a set
with an order that is not necessarily anti-symmetric.

Definition 2.6. A subcategory . of a category € consist of
e A subclass 06 . of (b €
o for every S,T € 0., a subset Hom (S, T) C Home(S,T);

such that the identity on any object in .# is a morphism in ., and compositions
of morphisms in . are morphisms in . again.

The subcategory . C € is called full if for all S,T € 0., Hom »(S,T) =
HOIIlcl,gﬂ(S7 T)

Example 2.7. e Ab is a full subcategory of Gp.

e For a poset (X, <), and Y C X with induced poset structure, the poset
category (y,<) is a full subcategory of €(x «)-

Definition 2.8. A morphism f € Hom¢(X,Y) is called

e monomorphism, if for any W and any g,h € Home (W, X) such that
fog=foh wehave g =h;

o epimorphism if for any Z and any ¢, h € Hom¢ (Y, Z) such that gof = ho f
we have g = h;

o split monomorphism (also called section) if there is g € Home (Y, X) such
that go f = idx;

o split epimorphism (also called retraction) if there is g € Home (Y, X) such
that fog =idy;
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e isomorphism if there is ¢ € Home (Y, X) such that g o f = idx and
f og = ldy
As the names suggest, split monomorphisms (split epimorphisms) are in fact
special monomorphsims (epimorphisms). See Exercise
We often denote monomorphisms by arrows >, and epimorphisms by ar-

rows —>.

Example 2.9. e In Set: monomorphism are split monomorphisms are in-
jective maps; epimorphisms are split epimorphisms are surjective maps;
isomorphisms are bijective maps.

e For a poset (X, <), all morphisms in the poset category ¢(x <) are both
mono- and epimorphisms. However, only identities are split monomor-
phisms or split epimorphisms.

In particular being a mono- and an epimorphism does not imply being an
isomorphism.

3 Functors

Definition 3.1. Let € and 2 be categories. A covariant functor F from € to
2 consists of

e amap € — MW Z: X+—FX, and

o for any X|Y € 6%, a map Homy(X,Y)— Homg(FX,FY), also de-
noted by F,

such that
e for any X € @0 % we have Fidx = idgx, and
e for any composable morphisms f and ¢ in € we have F(go f) =FgoFf.

A contravariant functor from € to 2 is a covariant functor from €°P to 2.
In other words, it consists of maps Homeg (X,Y) — Homg(FY,FX), and the
composition rule is F(go f) = Ff o Fg.

Example 3.2. e Let . be a subcategory of €. Then inclusion . — % is
a (covariant) functor.
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e Let ¥ be a category, and X be an object. Then Home (X, —) defines
a functor from & to Set: For any object Y € (0%, we obtain a set
Homg (X, Y") by definition of category. For a morphism f € Home (Y7, Ys)
we define Homg (X, f) by

Homg (X, f): Homg(X,Y1) —> Homg(X,Y2): g fog.

This functor is called the covariant Hom-functor.
e Similarly one defines the contravariant Hom-functor Home (—, X).

e For two posets (X, <) and (Y, <), a functor between the poset categories
is given by an order-preserving map X —Y .

e Forming fundamental groups gives a functor Top, — Gp from pointed
topological spaces to groups.

Definition 3.3. A functor F: € — Z is called

o faithful if for any XY € Ob € the map Home(X,Y) — Homgy(FX,FY)
is injective;

o full if for any X,Y € 6% the map Homg(X,Y)— Homg(FX,FY) is
surjective;

o dense if for any D € Ob & there is C € Ob € such that D =2 FC.

Example 3.4. e For an order preserving map f between two posets X and
Y, the associated functor between the poset categories is always faithful.
It is full if the images of two points are only comparable in Y if the two
points already were comparable in X. It is dense if and only if the map is
surjective.

e The forgetful functor Gp — Set is faithful, but neither full nor dense.

Definition 3.5. Let 2" and ¥ be categories. A ¥ -valued presheaf on Z is a
functor

AP —F.

We denote by preshe, 2 the collection of all ¥-valued presheaves on Z .
By abuse of notation, for a poset (X, <), we say a presheaf on (X,<) is a
presheaf on the poset category ¢ x <)
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More explicitly, a ¢-valued presheaf F' on a poset (X, <) consist of
e for every z € X, an object F, € Oby;
e for every x,y € X, such that <y, a morphism res¥ € Home (Fy, F,);

such that resy = idp,, and resy ores; = res;, whenever z <y < 2.

Remark 3.6. Depending on the setup, and preferences of different authors,
various different notations are being used in the literature. These include
Fun(Z°P,€), and, in partticular in the case of posets, “representations of 2~
in €7.

This name “presheaves” which we will use here originates in the following

example.

Example 3.7. Let T be a topological space, and X the set of open subsets of
T. Then X is a poset with inclusion as partial order. Let S be a set (possibly
with some extra structure, for instance S =R or S = C).

Then we obtain a Set-valued presheaf F' on X by setting F(U) to be all
(nice) functions from U to S. Here the restriction morphisms are restriction of
functions to a smaller open subset of T'.

4 Natural transformations

Definition 4.1. Let ¥ and 2 be categories, and F and G be functors from %
to 2. A natural transformation n from F to G consists of
e for every C € Ob ¢ a morphism 1o € Homg (FC,GC),
such that for any morphism f € Home (C1, Cy) we have
ne, oFf =Gfonc,,

that is the following diagram commutes in Z:

FCy e GCy
Ff{ [cf
FCy e GCy

A natural transformation 7 is called natural isomorphism if all the no are
isomorphisms in 2.
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Example 4.2. Let R be a ring. We denote by —* = Hompg(—, R) the dual-
ity Mod R— Mod R°P with respect to the ring. Then —** defines a functor

Mod R— Mod R, and we have a natural transformation given by evaluation:

ev: idModR —_—

evy(m) = [M* > ¢ ¢(m) € R] € Homgr(M™*, R).

For R =F a field, we note that —** also defines a functor mod F — modF
between the categories of finite dimensional modules, and the induced natural
transformation

ev: idpoqr —> —**

is a natural isomorphism.

Observation 4.3. Let 2 be a category, such that the objects form a set. (Such
a category is called small.)

Then, for an arbitrary category ¢ and functors F,G: 2 —> % the collection
of natural transformations from F to G forms a set. (In fact, it is a subset of
X xeop 2 Homg (FX,GX).)

Thus, for a small category 27, the ¥-valued presheaves on 2" form a cate-
gory, with

Hompesh, 2 (F1, F) = {natural transformations F; — F3}.

Obviously natural isomorphisms are precisely the isomorphisms in presh., 2 .

Example 4.4. Let (X, <) be a poset, € a category, and F; and Fy %-valued
presheaves on X.

A morphism f: F} — F, consists of morphisms f,: (F}), —> (F2), for any
x € X, such that res? of, = f, ores? whenever z < y. (Note that here the left
restriction refers to the structure of F5, while the right restriction comes from
the structure of F}.)

Example 4.5. e Let X = {1} be the poset with just one element. Then
presh, X = %.

o Let X = {1 < 2} be the poset with two comparable elements. Then the
objects of presh,, X are morphisms in %, and morphisms of presheaves
are pairs of morphisms between domains and codomains, such that the
resulting square commutes.
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e Let X be the poset given by the Hasse diagram
Ay
\0/

The objects of preshy, X are commutative squares in 4. (Note that we

don’t need to specify resy, since resy = resg ores? = res) ores*?.)

Theorem 4.6 (Yoneda Lemma). Let € be a category, C € 6%, and F a
functor € — Set. Then the map

Y: {natural transformations Home (C, —) —>F} —>FC
n—>nc(ide)

is a bijection. In particular the natural transformations from Home (C,—) to F
form a set.

Proof. We construct a map in the opposite direction. That is, given an element

x € FC, we construct a natural transformation ¢*: Home(C,—)—F. For
D c € we set

¢p: Homg(C,D)—>FD: f+—(Ff)(z).

(Note that Ff € Homget(FC,FD), so this makes sense.)
Let us first check that (* is a natural transformation. Let g € Home (D1, D2).
We have

(p, o Home (C, g) = [f > (Ff)(x)] o [f g o f]
=[f—(F(go f))(z)]
=F(g) o [f—>(Ff)(z)]
=F(g) o (p,

We immediately see that
Y (¢*) = ¢&(ide) = (Fide)(z) = idpe = @.

It remains to see that for any natural transformation n: Home(C,—)—F
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we have n = (Y. So Let D € O €. Then

¢y = Ff)(Yn)]
Ffonc)(ido)]

(np o Hom¢ (C, f))(id¢)] (7 is a natural transformation)

=[f—(
=[f—
=[fr—
=[f=—np(f)]
="NbD-

O

Corollary 4.7 (Yoneda embedding). Let 2 be a small category. Then the
functor
Y: 24— preshgy 2 : X Homg (—, X)

is fully faithful.

5 Equivalences of categories

Definition 5.1. A functor F: ¥ — % is called an equivalence if there is a
functor G: 92— % such that FoG = idg and GoF = ide.
n

at nat

Theorem 5.2. A functor F: € — 2 is an equivalence if and only if it is full,
faithful, and dense.

Proof. Assume first that F is an equivalence, and let G as in the definition.
Let n: G o F— id¢ be a natural isomorphism. Then for any morphism
f € Homg(Cq, Cs) we have the commutative square

GFCY ey o}
GFf J { f
7 2
GFCy — ,

Thus f =nc, oGFf o 7]511 is uniquely determined by Ff. That is F is faithful.
Let ¢ ba a natural isomorphism FoG—> idg. In particular for any D € Ob &

we have an isomorphism (p: FGD — D, showing that F is dense.
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To see that F is full, let f € Homg(FCy,FCs). Using the natural isomor-
phisms 7 and ( as above, we construct the commutative diagram

F 1 1
FO, <" EGFC, frc FC,
fJ gJ h{
F 2 2
FOy <2 EGRC, e FC,

where g and h are the unique maps making the squares commutative. By
naturality of ( we know that g = FGh, and thus the commutativity of the left
hand square gives us that

f =Fnc, oFGho (Fng,) ™"
= F(nc, o Ghong,)
showing that f is in the image of F.

Now assume conversely that F is full, faithful, and dense. By (a strong
version of) the axiom of choice, and since F is dense, we may fix, for any D €

Dby, an object GD in ¥ and an isomorphism (p: FGD—> D. For a morphism
f € Homg (D1, D3) we use the bijection

HOI’H(g(GDl, GDQ) - HOIIl@(FGDl, FGDQ)

induced by F (since it is full and faithful), and define Gf to be the preimage of
(paofolp,.

We claim that the above makes G a functor from 2 to . Firstly we have

Gidp = F ({5 oidp o¢p) = F*(idpep) = idep -

f
Secondly, for morphisms D — Dy i’Dg,
Glgo f) =F '((p, 090 folp,) =F ((p 0g0p,oCp 0 folp,)
=F'(Cp, ©9°Cp,) oF (¢p, 0 f 0 Cp,) =Gy o Gf.

Next we claim that ( defines a natural isomorphism F o G— idg. Let f €
Homg (D1, D3). Then

(D, ©FGf =(p, o (pr o folp, = folp,.
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Finally, we construct a natural isomorphism 7: GoF — id¢. First note that
¢ induces mutually inverse natural isomorphisms

G—:FoGoF—Fand (;': F— FoGoF.

Since F is fully faithful, we can find unique morphisms 7¢c: GFC' — C and
N : C—GFC such that

Gec = Frjc and Go = Fijg.
If follows that 7 is a natural transformation, with inverse n~. O

Example 5.3. Let F be a field.
Let Matp be the category given by

b Maty = Ny, and

Hompgat, (M, n) = {n X m-matrices over F}

with matrix multiplication.

Let modF be the category of finite dimensional F-vector spaces, with [F-
vector space homomorphisms as morphisms.

Then the natural functor Maty — mod I sending n to F” is an equivalence.

We observe that constructing an equivalence in the other direction amounts
to choosing a basis for every finite dimensional F-vector space.

6 Adjoint functors

Definition 6.1. Let ¢ and 2 be categories, and F: ¥ — % and G: 9—>%
functors. We say that (F,G) is an adjoint pair if the functors

Homg(F—,—) and Home(—,G—): €°P x ¥ —> Set
are naturally isomorphic.

Example 6.2. Let (X, <) be a poset, and % a category. For z € X we have a
natural projection functor

Tyt preshe X —€: F——F,.
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We may also consider the diagonal functor A: € — presh, X given by
A(C); = C for any x € X, and resy = id¢ for any y < x.

If (X, <) has a smallest element 0, then (mg, A) is an adjoint pair. Similarly,
if there is a largest element w, then (A, ) is an adjoint pair.

Example 6.3 (Free modules). Let R be a ring. Then we have the forgetful
functor £: Mod R— Set.
We construct a left adjoint R(—): Set— Mod R: For a set X,

RYX) = {functions f: X — R| f(z) # 0 for only finitely many z € X}.

For a map ¢: X —Y we set

z€p~1(y)
We claim that R(-) is left adjoint to f.
For z € X, we let
1 ify=
Xe: X —R:y— ?y ;v.
0 ify#x

Then y, € RXO.
Now we can define the mutually inverse natural transformations by
Homget (X, £M) <— Homp(RX), M)
p—[f— > ¢(z) - f(2)]

[t (Xa)] ¢

(Note that the sum in the second line is finite, since f(z) = 0 for almost all
rzeX.)

Example 6.4. Consider the forgetful functor £: Ab—> Gp. This functor has
a left adjoint, given by forming commutator factor groups.

Proposition 6.5 (Unit-counit adjunction). Let F: € — % and G: 9 —F be
two functors. Then the following are equivalent:
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1. (F,G) is an adjoint pair.

2. there are natural transformations n: idg —>GoF and ¢: F o G—> idg
(called unit and counit, respectively), such that

idp = ep_ o Fn and idg = Ge ong_,
i.e. for any C € Q€ and D € Q6 2

idpc = ErC OFnc and idGD = GED OoNeD-

Proof. Let a: Homg(F—, —) — Hom¢(—,G—) be a natural transformation.

Then we may define a natural transformation 7: idy —GoF by
ne = acre(ideo).
To check that this defines a natural transformation, note that for a morphism
f € Homg(Cq, Cs) we have
GFf onc, = GFf oac, rc, (drc,)

= QC, FCs (Ff>

= ac, ro, (drc,) o f

=1"1c, © fa

where the middle two equalities follow from the naturality of « in the second
and first argument, respectively.
Conversely, given a natural transformation 7: id¢y — G o F we can define a

natural transformation a: Homg(F—, —) — Home¢(—,G—) by

ac,p(f) =6(f)onc.

It is immediately checked that these two constructions are mutually inverse.
Similarly, we obtain a bijection between natural transformations

B: Home(—,G—) —> Homg(F—,—) and £: Fo G—> idg,

sending (3 to the natural transformation given by ep = fep.p(idep).
Now let o and 1 and § and € correspond to each other as above. Then

Boa= idHom@(Ff,f)
<—VCeEVD e Db D: 5C,D ocag,p = idHom@(FC,D)
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Moreover, since any morphism from FC' to D is a multiple of idg¢
<= VC e HE: 5071:0 o ac FC (idpc) = idFC

and, inserting ac ro(idec) = G(idrc) © ne = ne, and Berc(ne) = erc o F(ne),
we obtain

<= VC € B F: erc 0 F(ne) = idre
<= ¢ep_oFp=idp.

Similarly one can see that o o 8 = idgom, (—,c—) if and only if Ge ong_ =
idg. O
7 Limits

Definition 7.1. Let £  be a small category (which we think of as indices, in
some sense), and € an arbitrary category. We denote by A the functor

A: € —> preshy Z': CH—=>AC,
where AC' is the functor sending any object of 2" to C, and any morphism to
ide.
Let F' € Qb presh,, 2.

e a limit (or inverse limit, projective limit) of F' is an object lglF e,
together with a natural isomorphism

Home (—, @F) = Homyresn, 27 (A= F)

of functors €°P — Set;

e a colimit (or direct limit, injective limit) of F' is an object h_n;F e X E,
together with a natural isomorphism

Homgg(ligq F,—) = Hompesh,, 2 (F, A—)

of functors ¢ — Set.

Observation 7.2. Note that a limit of ' can equivalently be characterized as
an object I&HF € 0%, together with morphisms ¢, : &inFHFx such that
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fows =y forany f: x—y € 2, which is universal in the following sense: for
any other object C, together with maps v, : C' — F}, such that f o, =, for
any f: x—>y € 4 there is a unique map ¥: C' — @F such that ¥, = @, oW

forallz € O 2.
The dual description holds for colimits.

Proposition 7.3. Let F' € Obpreshe, 2 as above. If a limit im F' exists, then
it is unique up to (unique) isomorphism. If a colimit thF exists, then it is
unique up to (unique) isomorphism.

Therefore it makes sense to speak about the limit or colimit.
Proof. Let (L, p,) and (L', ¢l) be two limits. Then, by the universal property
for L, there is a morphism ¥: L' —> L such that ¢! = ¢, o U. By the universal
property for L’ there is a morphism ¥’': L —= L’ such that ¢, = ¢! o ¥’

Now, again by the universal property of L, there exists a unique morphism
®: L— L such that ¢, = ¢, o ®. But we know two candidates for ®: id; and

W o ¥’. It follows that ¥ o ¥/ = id,. Similarly one sees that ¥/ o U = id;,. It
follows that ¥ and ¥’ are mutually inverse isomorphisms. O

Observation 7.4. If any F' € Obpreshy 2" has a limit, then lim defines a
functor preshe, 2" —> ¢, and this functor is right adjoint to A.

If any F' € Ob presh, 2 has a colimit, then hﬂ gives a functor presh,, &' — €,
and this functor is left adjoint to A.

Example 7.5. Let (X, <) be a poset with a smallest element 0. Then we have
seen in Example [6.2] that

lim = 7o preshey X —> € F+—— Fj,.
Similarly, if X has a largest element w, then 1&1 = Ty.

Definition 7.6 (Product and coproduct). Let X be a set. We may regard X
as a poset with trivial poset structure. Let € be a category, and F' € preshe, X.
(That is F' is a collection of objects F;., one for each z € X.)

e If the limit lim F' exists, then it is called product of the objects F}, and
denoted by ], cx Fi-

e If the colimit lim F' exists, then it is called coproduct of the objects F,
and denoted by | [, cx Fa-
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Example 7.7. In the category Set, products are cartesian products, and co-
products are disjoint unions.

Example 7.8. In Mod R, both finite products and finite coproducts are given
by direct sums.

Definition 7.9 (Pullback and pushout). Let X be the poset given by the Hasse
diagram

AN
0

Let F' € presh,, X. If the limit lim F' exists, then it is called the pullback (or
fibre product) of F, and denoted by F,[[Fs.
Fy
By abuse of notation we also call the commutative square

F, F,
F, F,

a pullback, provided F, is the pullback of the rest of the diagram.

More explicitly, a pullback is a commutative square as above, such that for
any other X with morphisms X — F, and X — Fj making a similar square
commutative, there is a unique morphism X — F,, making the two triangles in
the following diagram commutative.

Let Y be the poset given by the Hasse diagram

AN,
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Let F' € presh,, X. If the colimit hglF exists, then we call it the pushout of F,
and denote it by F,[[Fp.
F,,

Example 7.10. In the category Set, the pullback of
F, Fy
reSS\A A/resg
Fy

is given by

FaHFb = {(a,b) € F, x F, | res¢(a) = res}(b)}.
Fo

The pushout of
F

res?/ wxfsl‘j’
F, F,

is given by

FaHFb =F, HFb/(resZ’(x) ~resy (z) | x € Fy).
Fo,

8 Limits and adjoint functors

Construction 8.1. Let F: ¥ — Z be a functor, and 2~ be a small category.
Then F induces a functor FP**sh: presh,, 2°—> presh,, 2.

Lemma 8.2. Let (F,G) be an adjoint pair of functors between categories € and
9. Let Z be a small category.
Then the corresponding functors between presheaf categories

FPresh s preshy, 27— preshy 2 and gpresh, preshy &° —> preshe, 2
also form an adjoint pair.

Proof. We have a natural isomorphism 7: Homg(F—, —) — Homg¢ (—,G—), i.e.
a collection of bijections nx y : Homg(FX,Y) — Home (X,GY') such that
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e for any f: X — X' € € we have a commutative square

nx,y

Homg(FX,Y) Homg(X,GY)
Homg(Ff,Y) Home (f,GY)
Xy
Homg (FX',Y) Homg (X', GY)

that is for any ¢: FX'—Y € 2 we have
nx,y(poFf)=nx y(p)o f.
e similarly, for any g: Y —Y’ € & and any ¢ € Homg(X,Y') we have
Ggonx,y () =nxy (go®).
Now we observe that

Homypyesn,, 2 (FIDreSh S,T)

={(fz)zcow 2z € XHomg(FS,, T,) | Voo € Homg (z,y): fo 0FSy =To 0 fyy}
zeOb X

Now f;0S, and Ty o f,, are morphisms from F.S,, to T;,. Since s, 7 is a bijection
we may replace the conditions above by 7s, 7« (fe © FSa) = 15,1, (Ta © fy).
Now note that by the two bullet points above the left hand side is equal to
ns,,T, (fz) © Sa, while the right hand side is equal to GTuns, T,(f,). Thus,
writing g; for ns, 1, (fz), the above set is in bijection to

{(92)zcon 22 € X Homg(Sy,GT;,) | Voo € Homg (2,y): 9o © S = GTo 0 gy}
zeOb X

= Hompesh,, 27 (5, gpreshp )

O

Theorem 8.3. Let (F,G) be an adjoint pair of functors between categories €
and 9. Let 2~ be a small category.

o Let X € preshy 2 such that Wm X exists. Then
: presh _ :
Hm G X = Glim X.

(In particular this limit also exists.)
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o Let X € preshy 27 such that lim X exists. Then
@FpreShX =F ligX.
Motto: Right adjoints commute with limits, left adjoints commute with colim-
its.

Proof. We only prove the first claim, the second one is dual.
We have

Home (—, Glim X) =2 Homg(F—, @X)
=~ Hompresh,, 2 (AF—, X)
= Hompresh,, 2 (F"*"A—, X)
= Hompresh, 2 (A—, GP"X).
O

Example 8.4. Consider the adjoint pair (R(~),f) between Mod R and Set
from Example We note that

RXUY) — R ¢ RY) and £(M @ N) =M x £N

by Theorem above. (Of course in this example we could also have checked
that directly.)
However in general neither

RXY) = RX) 5 RY) nor £(M & N) = £M [ £N.

9 Exercises

Exercise I.1. e Describe which morphisms in Set are monomorphisms,
epimorphisms, split monomorphisms, and split epimorphisms.

e Describe which morphisms in Top are monomorphisms and which mor-
phism are epimorphisms. Find an example of a morphism that is both a
monomorphism and an epimorphism, but not an isomorphism.

e Show that in the category Ring, the inclusion Z — Q is both a monomor-
phism and an epimorphism.
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Exercise 1.2. Let @ be a category, f and g two composable morphisms.
e Show that if f and g are monomorphisms, then so is f o g.
e Show that if f o g is a monomorphism, then so is g.

e Find an example of morphisms such that f o g is a monomorphism, but f
is not a monomorphism.

Exercise 1.3. Show that
e Any split monomorphism is a monomorphism.
e Any split epimorphism is an epimorphism.
e The following are equivalent, for a morphism f:

— f is an isomorphism;
— f is a split monomorphism and an epimorphism;

— f is a monomorphism ans a split epimorphism.

e If f is an isomorphism, the the g in the definition is uniquely determined.
(And hence we denote it by f=1.)

Exercise I.4. Which of the following functors are full? faithful? dense?
e the natural inclusion Ab— Gp;
e forgetting the topology Top — Set;

e the Hom-functor Homap(Z/(2),—): Ab—>Set.

a b
Exercise 1.5. Let X be the poset given by the Hasse diagram \O/ that is

a >0 and b > 0 with a and b incomparable.
e Determine all objects F' € preshge, X such that F(i) € {0, {x}} Vi € X.

e Which of the presheaves determined above are isomorphic to a presheaf
of the form Home, (—, %) for some i € X7

e Determine all objects F' € presh,, gy X (where F is a field), such that
F(i)=Fforalli € X.
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e Which of the presheaves determined in the third part are isomorphic?

Exercise 1.6. Recall that for a group G, we denote by G°P the opposite group,
that is the group with the same elements as G, but multiplication given by
goph=nh-g.

e Show that this construction defines a (covariant!) functor Gp — Gp.

e Any group G is isomorphic to its opposite group: An isomorphism is given
by g ¢~ !. Investigate if this collection of isomorphisms defines a natural

isomorphism idgp — —°P.

Exercise I.7. Let G be a non-trivial group. We can consider the category 6g
having only one object %, with Home,, (%, %) = G, and composition of morphisms
given by group multiplication. (Convince yourself that this is a category.)

Consider the following two functors F = Homg,, (x, —) and H: ¥ —> Set
given by H(x) = G and H(g) = 1¢.

Show that the functors F and H agree on all (i.e. the one) objects, but are
not naturally isomorphic.

Exercise I.8. Let X = {a,b,c} with the preorder given a < a, a < b, a < ¢,
b<a,b<b b<c¢ c<ce (Soaand b violate anti-symmetry). Let Y = {1,2}
with the natural poset structure (i.e. 1 < 2). Show that the poset categories
6(x,<) and €[y <) are equivalent.

More generally, given an arbitrary preordered set X, find a poset Y such
that the cateories 4 x <) and €[y, ) are equivalent.

Exercise 1.9. Let X = {1 <2} and Y = {1}. Let & be any category.

e Convince yourself that inclusion of Y into X induces a functor

preshey X — preshe, Y: F'—— F oincl.

e Find a right adjoint to the functor above.
e For ¢ = Set or ¥ = Ab, find a left adjoint to the functor above.
Exercise 1.10. Find left adjoints to the functors

e forget: Ring— Rng, the forgetful functor from rings with multiplica-
tive unit to rings without multiplicative unit.
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e forget: Ring, — Ring, where Ring, is the category of “pointed rings”,
that is pairs (R,7) of a Ring R and an element r, and morphisms being
ring homomorphisms which send the distinguished element of the first ring
to the distinguished element of the second ring.

Find the unit and counit maps for both the above adjunctions.
Exercise I.11. Let A be an abelian group, S and T two subgroups.
e Show that the pullback of

S
incl.
T incl. A
is given by SNT.
e Show that the pushout of
roj.
POl g
{ proj.
A/T
is given by A/(S+T).
Exercise 1.12. In the category Ab
e Show that the pullback of
L
e
g
M N

is given by
LTI M = {(m) € Lo M| al) = f(m))
N

(with the obvious maps to L and M).



9. EXERCISES 27

e Show that the pushout of

is given by
M]]N=MoN/{(B(t),~a(t)) | L€ L}.
L

Exercise 1.13. Let X be any poset, and F' a Set-valued presheaf on X. Show
e that the limit @F exists;

e that the colimit hénF exists.

HiNT: Construct them explicitly, starting with product and coproduct, respec-
tively.

Exercise 1.14. In any category, consider the following diagram

Show that the “iterated pushout” (W [[ Y) [ [y Z is isomorphic to the pushout
along the composition of the horizontal arrows W ][ Z, provided all the push-

outs exist.
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Chapter 11

Additive and abelian
categories

10 Additive categories

Definition 10.1. A pre-additive category is a category &7 such that all Hom-
sets are abelian groups, and composition of morphisms is bilinear.
An additive category is a pre-additive category 7 such that

e there is a zero-object, i.e. an object 0 such that for any X € b </ both
Hom g (X,0) and Hom, (0, X) contain precisely one morphism.

o for any X,Y € (b« there is a biproduct, i.e. an object X @ Y with

morphisms
Lx Ly
/_\ /\
X XY Y
\/ \/
TX Ty
such that

idy =7mxotx, idy =7y ory, and idx@yszoﬂ'x—‘rLyOﬂ'y.
Example 10.2. e Ab is an additive category.

29
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e For a ring R, the category Mod R is additive.
e Set and Top are not additive categories.

e For any small category £, and any additive category 7, the category
presh,, 2 is additive.

Observation 10.3. In the situation of the biproduct diagram, we have

Ty OLY =Ty OLX OTX OLX = Ty OLx — My O Ly omy otx = 0,
—— ——

=idxgy —tyomy =idy

and similarly
Tx Oly = 0.

Lemma 10.4. Let &7 be an additive category. Then, for any two objects X and
Y, the biproduct X ®Y is a product and a coproduct of X and Y .

Proof. We show that X @Y is a product, the proof that it is a coproduct is
dual.
We have to show that for any maps fx: H— X and fy: H —Y there is

precisely one map f: H—X @Y such that nx o f = fx and 7wy o f = fy.
We see that

f=idxgyof=itxomxof+iyomyof=ixofx+iyofy.

Thus f is unique. On the other hand we can see that tx o fx + vy o fy fullfils
the requirements:

mxo(txofx +iyofy)=mxoixofx +mxoyofy = fx.
~—— ~——
—idx =0
and similarly
Ty o (tx o fx + v o fy) = fr.

O
Remark 10.5. e In particular in an additive category any two objects have

isomorphic product and coproduct. This shows that neither Set nor Top
can be additive categories.
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e It is possible to show that the addition of morphism is completely deter-
mined by the biproducts, and not an additional part of the structure.

That is, an additive category is a category with a zero-object, such that
any two objects have a product and a coproduct which are isomorphic,
satisfying certain properties.

Remark 10.6. For n > 1, and objects X1,...,X,,, we can iteratedly construct
X = (-~-(X1@X2)@X3)---)@Xn.

We note that for this object we have, similarly to the biproduct diagram and
with maps given by compositions of the maps there

mi: X —> X, and ¢;: X; —> X

such that

n
m o =idy, Vi, and E t;om =idx .

i=1

Remark 10.7 (Matrix notation). We often use the following intuitive matrix
notation for morphisms from X = X;®---d X, toY =Y1H--- P Y,,:
A morphism f: X —Y is represented by the matrix

(Tryi, o f © LXj)’iZl,...,m-
j=1,....n

Conversely, given a matrix

(flj) =1,....,m with .fij: Xj —Y;

%
j=1,....n

we can interpret it as the map

ii%ofijoﬂszX*»y

i=1 j=1

One easily sees that these constructions are mutually inverse to each other, and
thus we may identify matrices and maps between biproducts.

The main advantage of this notation is, that composition of maps is just
given by matrix multiplication:
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Given
0 ) (gi)
b &
k=1 j=1 i=1
we have
m n o
(9i3)i.g © (fik)jn = ZZLZ © gij © Ty;) vy, © fikomx,)

i=1 j=1 ]:1 k=1
m n o

=02 D wzogiolmonx,)
i=1 j=1 k=1
n

Z ijk

=1

11 Kernels and cokernels

Definition 11.1. Let f: X —Y be a morphism in an additive category. The
kernel of f is (if it exists) the pullback of

0
|
XLY

In other words, the kernel is given by an object Ker f, together with a morphism
k: Ker f — X (the other morphism Ker f — 0 necessarily being 0), such that
f ok = 0, and that for any object H and morphism h: H— X such that
f oh =0 there is a unique morphism h: H— Ker f such that h =& oh.
Dually, the cokernel of f is, if it exists, the pushout of

X —Y
| f
0

and consists of an object Cok f and a map w: Y —> Cok f.
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Observation 11.2. In the definition of kernel above the map « is a monomor-
phism: Let h,g: H— Ker f such that koh = kog. Then clearly foxoh =0,
and therefore k o h factors uniquely through &, i.e. h = g.

Dually the map 7 in the definition of cokernel is an epimorphism.

Lemma 11.3. Let f: X —Y be a morphism in an additive category. Then
f is a monomorphism if and only if 0— X is a kernel of f. Dually f is an

epimorphism if and only if Y —>0 is a cokernel of f.

Proof. Assume first that f is a monomorphism. Then any morphism h: H — X
such that f o h = 0 is necessarily 0, and therefore factors (uniquely) through

0—X.
Conversely, assume 0— X is a kernel of f. Then any map h such that
f oh =0 factors through 0, that is is zero. O

12 Abelian categories

Definition 12.1. A pre-abelian category is an additive category 7, in which
every morphism has a kernel and a cokernel.

Definition 12.2. Let & be pre-abelian, and f: X —Y a morphism. Let
Ker f ~> X and Y —> Cok f be kernel and cokernel of f. Then

e the image of f, denoted by Im f, is the kernel of 7;
e the coimage of f, denoted by Coim f, is the cokernel of ..

Proposition 12.3. In the setup of Definition there is a unique map f
making the diagram

f ™

N i

Coimf——f—>1mf

Ker f Cok f

commautative.
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Proof. Uniqueness of f follows immediately, since morphisms p and & are epi
and mono, respectively.

Since f ot = 0 there is a morphism f’: Coim f—>Y such that f op = f.
Moreover, since p is epi, 0 = wo f = wo f'op implies wo f/ = 0, hence f’ factors
through . This proves the existence of f. 0O

Definition 12.4. An abelian category is a pre-abelian category, in which, for
any morphism f: X —Y the induced morphism f: Coim f — Im f is an iso-
morphism.

Remark 12.5. In other words, an abelian category is an additive category
with kernels and cokernels, in which the first isomorphism theorem holds. (Re-
call that the first isomorphism theorem is precisely that X modulo kernel is
isomorphic with the image.)

Observation 12.6. In an abelian category
e every monomorphism is a kernel of its cokernel;
e every epimorphism is a cokernel of its kernel;

e every morphism that is both a monomorphism and an epimorphism is an
isomorphism.

Remark 12.7. One can show that the first two points above give an equivalent
definition of abelian category.

13 Exact sequences, pullbacks and pushouts

! 9
Observation 13.1. Let A— B—(C' be morphisms in an abelian category,
such that g o f = 0. Then we have the following commutative diagram

Im f B Cok f

| |

Kerg B Img

where the right part consists of the cokernels of the left horizontal maps, and
the left part consists of the kernels of the right horizontal maps.
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It follows that the morphism Im f — Ker g is an isomorphism if and only

if the morphism Cok f — Img is. (We may note that the former always is a
monomorphism, and the latter always is an epimorphism.)

Definition 13.2. Let ALBi C be morphisms in an abelian category, such
that g o f = 0. We say that this sequence of morphisms is ezact if the natural
morphism Im f—> Ker g is an isomorphism.

We say that a longer sequence of morphisms is exact if it is exact in every
(inner) position.

f
Example 13.3. e The sequence 0—> A—> B is exact if and only if Ker f =
0, that is if and only if f is a monomorphism.

Dually the sequence ALBHO is exact if and only if Cok g = 0.

f
The sequence 0— A— B 0 is exact if and only if

— f is a monomorphism (as before), and

f
— Kerg =1Im f = A, that is A—> B is a kernel of g.

f
Dually the sequence A— B N C —0 is exact if and only if B N Cisa
cokernel of f.

f g
The sequence 0 — A— B—> C' —> 0 is exact if both f is a kernel of g and
g is a cokernel of f. Such an exact sequence is called short exact sequence.

Proposition 13.4. Let o/ be an abelian category. Consider the morphisms in
the following commutative square.

A / B
o g
C d D
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e The square is a pullback if and only if the sequence

(%) (h i)

0 A BeC D
s exact.
e The square is a pushout if and only if the sequence
(&) (h )
A—""Bac D 0

15 exact.

Proof. We first observe that the commutativity of the square means that (h  4)o
(4/)=-hof+iog=0.
Now observe that the square is a pullback if and only if

VAe b/ Vf: A—>BV§: A—>C:
if hof=iogthenlp: A—>A: f=fopandj=gop
assembling maps in matrices we obtain that this is equivalent to
viewa v () Ai—Bac:
if (h i)o (%’c) =0 then Jlp: A—> A: (%f) = (}f) 0
Now note that this last statement is precisely the definition of a kernel.

The proof of the second point is dual. O

Remark 13.5. Proposition[I3.4]shows, in particular, that in abelian categories
pullbacks and pushouts always exist.

Corollary 13.6. Let &7 be an abelian category. If the square
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e is a pullback, and i is an epi, then it is also a pushout;

e is a pushout, and f is a mono, then it is also a pullback.
Proposition 13.7. Let </ be an abelian category.

e [f the square

A / B
1 g
C d D

s a pullback, then the kernel morphism Ker f —> Keri is an isomorphism.

o If the square is a pushout then the cokernel morphism Cok f—> Coki is
an isomorphism.

Proof. We only prove the first part, the second one is dual.
Denote the inclusions of the kernels by ¢: Ker f— A and x: Keri—C|
respectively, and the kernel morphism by ¢: Ker f — Keri. Consider the mor-

phism 0: Keri— B, as indicated in the following diagram.

Clearly iox = 0 = h o0, so by the pullback property there is a morphism
k: Keri— A such that Kk = gok and 0 = f o k. By the second equality %
factors through the kernel of f, that is there is a morphism &: Keri—> Ker f

such that K = toR. R
Now it only remains to verify that & is an inverse of . Firstly we have

KOWORK=goLOK=(goR =K,
and hence, since k is a monomorphism,

QPOH:idKerzW
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Secondly we have
(F)oworop=()oRop=(Dop=(udp) = () =(F)on
and hence, since both ¢ and (’gf ) are monomorphisms,

EO@:idKerf.

Corollary 13.8. In an abelian category
e the pullback of a mono is a mono;
e the pullback of an epi is an epi;
e the pushout of a mono is a mono;
e the pushout of an epi is an epi.

Moreover, in the case of the second and third point, the square in question is
actually both a pullback and a pushout.

Proof. The first point follows immediately from Proposition above.
For the second point, note first that the pullback now also is a pushout, by

Corollary Now apply (the dual-part of) Proposition m
The third and fourth points are dual to the second and first, respectively. [

f ¢
Proposition 13.9. In an abelian category, let AHBL C be morphisms such
that go f = 0. Then the following are equivalent.

f 9
e The sequence A— B—>C' is exact.

e For any morphism x: X — B, such that g o x = 0, there is an object )A(,

and morphisms T and j? as in the following diagram

g—1—x
|, L
) P ST

9

such that the square commutes, and f is an epimorphism.
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e For any morphism y: B—Y, such that yo f =0, there are an object Y,
and morphisms § and f as in the following diagram

R A S
y —7

such that the square commutes, and § s a monomorphism.
Proof. We only prove the equivalence of the first two points. The equivalence
of the first and last point is dual to this.
f g
Assume first that A— B—C' is exact, that is Im f>> B is a kernel of

g. Thus any morphism z such that g o x = 0 factors through Im f>— B, as
indicated in the following diagram.

X
f
x/
Al X
AL Im f
f/
i\./ {
A 7 B g C
We form the pullback as indicated above. By Corollary the morphism f’

is epi.
Now assume conversely that the second point holds. In particular we can
find a commutative diagram

—

Kerg Ker
| L
f
A B 7 C
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where +: Ker g—> B is a kernel of g, and fis an epimorphism.

Then Ker g is the image of ¢ o f = f o7, and the inclusion of Ker g into B
factors through the inclusion of Im f. It follows that the inclusion of Im f into
Ker g, which exists since g o f = 0, is an isomorphism, i.e. that the sequence is
exact. O

Remark 13.10. In the category Mod R of modules over a ring we can determine
exactness using elements: A sequence of morphisms

At t ¢

with g o f = 0 is exact if for every element x € B such that g(z) = 0 there is a
preimage, that is & € A such that f(Z) = .
Proposition |13.9|now tells us that the same holds for arbitrary abelian cate-

gories, if we replace “element” by “morphism X L”, and “preimage” by “com-
mutative square with epimorphism”.
We will see this kind of substitution in practice in the next section.

14 Some diagram lemmas

Theorem 14.1 (Five lemma). Let &/ be an abelian category. Consider the
following commutative diagram with exact rows.

ay az as a4

A1 A2 A3 A4 AS
flJ f% f3‘ f4J fs‘
b b b b
By L B 2 By P B L B

o Assume fo and fi are monomorphisms, and fi is an epimorphism. Then
f3 is a monomorphism.

o Assume fo and fy are epimorphisms, and fs is a monomorphism. Then
f3 is an epimorphism.

In particular, if all of f1, f2, fa, and fs are isomorphisms, then so is f3.
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Proof for the case Mod R.
FIRST POINT: Let z € A3, such that f3(x) = 0. Then fy(asz(z)) = bs(f3(x)) =0,
and, since fy is a monomorphism, as(z) = 0.

Thus there is a preimage Z of = in Ay. We see that ba(f2(Z)) = f3(a2(Z)) =
fa(x) =0, and thus there is a preimage E(?) of fo(Z) in Bj.

e

Since f7 is assumed to be an epimorphism we can find a preimage fo(Z) of

f2(Z) in A;y.
Now note that

—_ —

falar(f2())) = b1 (1 (f2(2))) = f2(),

and, since f5 is a monomorphism this implies al(]%) =7.
Thus = = a2(Z) = az(a1(f2(7))) = 0.
SECOND POINT: Let x € Bs. Since fy is epi there is 2’ € A4 such that fy(2') =
bg (.’E)
We note that f5(aa(z’)) = ba(fa(z’)) = ba(bs(x)) = 0. Thus, since f5 is
mono, we have a4(z’) = 0. It follows that there is T € Ag such that a3(Z) = «'.
Next observe that

ba(x — f3(Z)) = ba(w) — b3(f3(Z)) = b3(z) — f4(@) =0.

=x’/

Hence there is y € By such that ba(y) = = — f3(Z). Moreover, since fo is epi,
there is y € As such that fo(y) = y.
Now we have that

f3(Z + a2(y)) = f3(2) + b2(f2(¥)) = f3(2) + = — f3(2) =z,
——
=y
showing that an arbitrary x lies in the image of f3. O
Proof for arbitrary abelian categories. We only prove the first point, the second

one is dual.
Let z: X — A3z be a morphism such that f3 ox = 0. Since

fioazox=bzo fyox =0,
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and f, is mono by assumption, we have az o x = 0. Thus, by Proposition [T3.9}
we obtain X, Z, and an epimorphism s as indicated in the following diagram.

. bioh &

X X X
a a

Ay — Ay —2 > Ay

f 1{ f2 f3

b b

By ———> By — > B4

Now note that by o (f2 0 Z) = 0, and that, since f; is epi,
biof b
A, —"5B,—2 B,

L —

is exact. Hence we can find X , f2 07, and an epimorphism b; o f; as indicated
above, such that by o fio fooZ = fooZoby o fi. Since by o f; = faoaq, and fo
is a monomorphism by assumption, this implies
ajo fao =2obyofy,
and thus . o
roazobiofi =asoajofsox =0.
=0

Since as o by o f1 is an epimorphism this means that z = 0.

Thus we have seen that f3 o x = 0 impies x = 0, which means that f3 is a
monomorphism. O

Theorem 14.2 (Characterization of pullback and pushout). In an abelian cate-
gory, consider a commutative square, together with its kernel and cokernel mor-
phisms as in the following diagram.

Ker f : A

Cok f

Cok i
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Then

e the square is a pullback if and only if k is an isomorphism and c is a
monomorphism;

e the square is a pushout if and only if k is an epimorphism and c is an
isomorphism.

Proof. We only prove the first claim, the second one is dual.

Assume first that the square is a pullback. We have already seen — in Propo-
sition — that the kernel morphism k is an isomorphism. Let x: X — Cok f
be a morphism such that cox = 0.

T——>3
T x
L T ok ¥
h c
Lo p—" s coki

Since B—> Cok f—0 is exact, by Proposition [13.9] there are )A(, 7, and an
epimorphism 7 as indicated in the diagram.

Since C —> D —> Coki is exact, and po(hoZ) = cozom = 0, Proposition|13.9

also implies the existence of X , hoZ, and an epimorphism i as above.
We get ¢ as indicated above by the pullback property of the original square.

Thus zoToi=mo fop=0implies z = 0, and thus ¢ is a monomorphism.

Now assume conversely that k is an isomorphism, and ¢ a monomorphism.
We have to show that the square is a pullback.

We consider the pullback of ¢ and h, and, by the pullback property, we get
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a map ¢ to it from A as indicated in the following diagram.

Ker f : A f B u Cok f
K" v idp c’
j Keri = B];[C d B L Coki |¢
Iy g ; h o
Keri A C ! D P Cok i

By the other implication of this theorem, we know that k’ is an isomorphism.
It follows that also k” is an isomorphism. Moreover, since ¢ is mono, so is c¢”.

It now follows from the five lemma (Theorem[14.1)) that ¢ is an isomorphism.

O

Theorem 14.3 (Snake lemma). In an abelian category, consider (solid part of)
the following diagram with exact rows and columns

Ker fl ——————— > Ker f2 ******* > Ker f3 N
A L2 t3 \\l 0
a a ‘
Al ! A2 2 A3 /’ 0
f fo f3 /’
0 l// B B B
I ' bl ’ b2 ’
l m e 3
NS COkf] ******* > COkf2 ”””” > COkf3

Then there is a map 0: Ker f3—> Cok f1, such that the dashed sequence

Ker f; —> Ker fo — Ker f3 i Cok f; —> Cok fo —> Cok f3

s exact.
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Proof. Construction of : Consider the pullback As]] Ker f3, and the pushout
Az

14.2| we have induced exact sequences

Bs]] Cok f1. By Theorem
B1

a as
Al *1’ AQH Kerf3 i’ Kerf3 —>0
Az

and

b b
0— Cok f; —» B, ] | Cok fi —> Ba,
B

as indicated in the following diagram.

kl k2
Ker f1 Ker f, Ker f3 -~ _
\ /\ﬂ "\
Lo AQH Ker f3 a2 K
L1 =N L7 A L3 \1 9
aq /\ :
3 I
A ai Az a2 As /
fi f2 f3 A
/ b b
// B1 ! BQ 2 B3
| T =
| - / 1 ba Vs
: U BIICkA] 3

| ’bl/v B1 \
1 s Cok f3

"~ > Cok fy Cok fo

We consider the composition
mofaol3

in the middle of the diagram.
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Note that both
(Fiofaoiz)odi =biomofi =0

and _
bao(miofaoiz)=fzou0dy=0.
Thus 71 o f3 o i3 factors through both @ and l;vl, that is we can (uniquely) find

0 such that _
biodoay =m o faols.

Ezactness in Ker fo: We first note that ksok; = 0 by functoriality of kernels.
Now we aim to apply Proposition [I3.9] to show exactness.

Let x: X — Ker f; such that k3 o z = 0. Then clearly also ay 013 0x = 0.
Hence, since the sequence A; — As —> A3 is exact, by Proposition there
is an object X and morphisms @; and i3 o @ such that @ is epi, and i3 o zoa; =
ay o 13 o x, as indicated in the following diagram.

X
xr
ko
Ker f2 Ker f3
L2 L3
a
Ay 2 Ay
f2
By

We note that by o fioigox = faotgoxoa; =0. Since by is mono this implies
that fiogox =0, s0 igox = 11 o ¢ for some ¢ as indicated by the dashed
arrow above. Since

—_— o~
tpokijop=ajoryop=a;0izor=130x04a1,

and since 1o is a monomorphism, it follows that also the upper square of the
diagram commutes. Now exactness in Ker fy follows from Proposition [13.9
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_ Exactness in Ker f3: We begin by noting that d o ko = 0: This follows form
by odoky =110 fy01y =0, since by is a monomorphism.

Now we proceed showing exactness by using Proposition [13.9] Thus, let
y: Ker f3—Y such that y o ko = 0. We construct the following diagram form
top to bottom:

Ker f» " Ker 5 Y
Lo L3 3
Ay @ Ay @ A3 J Y
fi f2 B fa
B— " .3 v v
m ~ st
Cok f; y 15/

Here we used Proposition [[3.9] thrice:

e Y. %, and a monomorphism 3 exist since ¢3 is a mono;

= . i . L f .
e Y y, and a monomorphism fy exist because Ker fs = Ay = B5 is exact,
and (goag) oty =i30yoky =0;

) }N/, 5, and a monomorphism 77 exist because A; h, By ok f1is exact,
and (anl)ofl ::f;oﬂo%oal =0.
We now claim that _
(Tiofaolz)oy=yoo.
To check this, consider the epimorphism as: AQAH Ker f3— Ker f3 as above.
3

Note that we have
doay =mioh,

where h is the unique map As] [ Ker f3 —> B; such that by o h = fy 0 i3.
As
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Now we can calculate

50305\2 :joﬂloh
=T o 5 obyoh
=Tojofr00
=Tof0j0a00
=T 0 fQ oyolLzoan
=710 fa0iz0y0ay.

And the claim follows since a3 is an epimorphism.

Now exactness of the snake sequence in Ker f3 follows from Proposition[13.9

Ezactness in Cok f1 and Cok fo: Are dual to the two positions we have
already treated. O

Remark 14.4 (Construction of 9 for Mod R). For an element z of Ker fs, let
Z be a preimage of t5(x) in As. Then ba(f2(Z)) = f3(a2(Z)) = f5(e3(x)) = 0.
Therefore fo(Z) has a preimage f2(Z) in By. We define 9(z) = 71 (f2()).

One may check that this is well-defined.

15 Exercises

Exercise II.1. Let & be a pre-abelian category, and X be a finite poset. Show
that any F' € presh,, X has a limit and a colimit.

Exercise I1.2. Consider an additive category.

e In the situation of the biproduct diagram

Lx Ly
/\ /_\
X XaY Y
\_/ \_/
X Ty

with idxy = 7mx oitx, idy = my ovy, and idx@y =i1xomx +ty omy: Show
that 7y is a cokernel of ¢x.
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e Let f: X—Y be a split monomorphism, which has a cokernel. Show

that there is an isomorphism ¢: Y — X @ Cok f making the triangle

f Y
{sa
Co

X®

X

1%

k f

commutative.

Exercise I1.3. Let o7 be a pre-abelian category. Show that the following are
equivalent:

e o/ is abelian;

e every monomorphism is a kernel of some morphism, and every epimor-
phism is a cokernel of some morphism.

HINT: First show that if a monomorphism is a kernel of some morphism, then
it is in fact a kernel of its cokernel.

Exercise I1.4. In an abelian category, consider a morphism f: X —Y with
its image Im f.

e Let e: W —> X be an epimorphism. Show that Im(f oe) = Im f.
e Let m: Y>> Z be a monomorphism. Show that Im(m o f) = Im f.

e Assume f =moe, with e: X —1I epi and m: I —Y mono. Show that
I=Imf.

Exercise I1.5. Consider the poset
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and the morphism of Ab-valued presheaves on it

(Here “2” is short for “the map given by multiplication by 2”.) Check that this
is a morphism. Calculate the kernel, image, and cokernel of this morphism.

Exercise I1.6. Show that, for an abelian category o/ and a poset X, the
presheaf category presh X is abelian again.

Exercise I1.7. In an abelian category, let f: A— B and g: B— C be mono-
morphisms. Show that there is a short exact sequence

0—> Cok f—> Cokgo f—> Cokg—>0.

REMARK: If we think “Cok f = B/A”, “Cokgof = C/A”, and “Cokg = C/B”,

then this exercise gives us the isomorphism theorem % ~ C/B.

Exercise I1.8 (3 x 3 Lemma). Consider the following diagram with exact rows
and columns.

0 0 0

A B C
0 A’ B’ c’ 0
O A// Bl/ C// 0
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Show that A, B, and C also form a short exact sequence fitting into the above
diagram.

Exercise I1.9 (Salamander lemma). Consider the following diagram in ModR,
where 75 = 0 and 6y = 0.

A
{a
B o c i D i E
{e
F

Show that the sequence

Kery =~ Kerey Ker 0 NKere Ker§ F
Im g Ima+Img Im~va Im~y Imey

is exact.
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Chapter 111

Hom and )

16 Hom, projectives and injectives

Let & be a preadditive category, and A € Ob«/. Then Homg(A,—) and
Hom,, (—, A) define (additive) functors form & to Ab (covariant and contravari-
ant, respectively).

Now let o7 be abelian. We want to investigate what the Hom-functors do
to short exact sequences.

Example 16.1. In Ab, consider the short exact sequence

OHZiZHZ/(Q) —>0.
Applying Homap(Z/(2),—) we obtain

0—0—>0—>Z/(2)—0.
Applying Homap(—,Z/2) we obtain

0—>2/(2) % 2/(2) > 2/(2) — 0.

In both cases we observe that the resulting sequence is not exact any more.

However, in both cases we may note that the left map is still the kernel of
the right map. We will now see that this is a general feature of Hom-functors.

53
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Theorem 16.2 (Hom is left exact). Let o/ be an abelian category, and let
AeOb .

o Let 0—X—Y —Z be exact. Then also

0—> Homg (A4, X) —> Homy(A,Y)—> Hom (A, Z)
is exact, that is Homg (A, —) preserves kernels.
o Let X —Y —Z—>0 be exact. Then also
0—> Hom (Z, A) —> Homy (Y, A) — Homy (X, A)
is exact, that is Homg (—, A) turns cokernels into kernels.

Such functors are called left exact.

Proof. We only prove the first claim, the second one is the same for the category
o/ °P.

We denote by f: X —Y and g: Y — Z the maps of the original sequence.
We first check that f* = Homg (A, f) is injective. Let ¢ € Homg (A, X) such
that f*(¢) = 0. By definition f*(¢) = f o ¢, and since f is a monomorphism
this can only be zero if ¢ already is zero.

Next let ¢ € Ker g*, that is go @ = 0. Then, since f is the kernel of g, there

is a map ¢: A— X such that o = f o), i.e. ¢ = f*(¢) € Im f*. O

Definition 16.3. A functor between two abelian categories is called exact if it
preserves short exact sequences. It is called right exact if it preserves cokernels.

Observation 16.4. For a functor F between two abelian categories the following
are equivalent:

e F is exact;

e [ is left exact and maps epimorphisms to epimorphisms;

e F is right exact and maps monomorphisms to monomorphisms.
Definition 16.5. Let o/ be an abelian category.

e An object P is called projective if the functor Hom g (P, —) is exact.

e An object I is called injective if the functor Homg (—, I) is exact.
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Clearly injective objects in o/ are just projective objects in .o/°P.

Example 16.6. In the category Mod R, the object R is projective: Indeed
the functor Hompg(R, —): Mod R—> Ab is just the forgetful functor, and hence
clearly is exact.

Observation 16.7. Direct sums and direct summands of projective objects are
projective (and similar for injective). The zero object is projective and injective.

Observation 16.8. Let & be an abelian category.

An object P is projective if and only if any given diagram as the solid
part of the following, with exact row

can be completed to a commutative diagram by a morphism as indicated
by the dashed arrow.

(This is just a diagrammatic restatement of the fact that the functor

Hom, (P, —) maps epimorphisms to epimorphisms.

An object I is injective if and only if any given diagram as the solid part
of the following, with exact row

can be completed to a commutative diagram by a morphism as indicated
by the dashed arrow.

Recall that the free R-module on a set [ is

R = {f: T—> R f(i) # 0 for only finitely many i € I}.
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Theorem 16.9. Let R be a ring, P an R-module. Then the following are
equivalent:

e P is projective in Mod R;
o There is a module Q such that P ® Q = RY) for some set I.

Proof. =: Consider the natural map 7: R(") — P (the counit of the adjunc-
tion). It clearly is an epimorphism, and, since P is projective, it splits. Therefore
P& Kerm = RP),

<—: Since Homl\/[odR(R(I)7 —) = Homget (I, —), this functor maps epimor-
phisms to epimorphisms. Hence R) is projective. It follows that also all direct
summands of R() are projective. O

Remark 16.10. It follows that for any R-module M, there is an epimorphism
P —> M from a projective module. (Take for instance P = R(M).)
It is also possible to show (but a lot more technical) that for every R-module

M there is a monomorphism M > I into an injective R-module.

17 Tensor products

Definition 17.1. Ler R be a ring, M a right R-module and N a left R-module.
A map ¢: M x N— A to an abelian group A is called R-balanced if

Ym € M,n1,ne € N: p(m,n1 +ng) = p(m,ny) + p(m,na),
Ymy,mq € M,n € N: p(m1 +ma,n) = p(mi,n) + p(ma,n),
Ym € M,n € N,r € R: o(mr,n) = p(m,rn)

A tensor product is an abelian group M ®g N, together with an R-balanced
map t: M x N— M ®pg N, such that for any R-balanced ¢: M x N — A there
is a unique morphism of abelian groups h: M ®r N — A such that ¢ = hot.

In this situation we write m ® n = t(m,n), and call it an elementary tensor.
Note that there is no reason for ¢ to be surjective in general, that is not all
elements of the tensor product need to be elementary tensors.

Theorem 17.2. Tensor products exist and are unique up to isomorphism.

Proof. Uniqueness can be shown similarly to the proof of uniqueness of limits
and colimits (see Proposition [7.3)).
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To prove existence we explicitly construct a tensor product. We start b
considering the free abelian group F = ZM*N)  We have seen in Example
that

HomAb(F, A) = HOmSet(M X N, A)

Now the idea of the proof is that we alter F' in such a way that in the right hand
side only the R-balanced maps remain. We denote by U the abelian subgroup
of F' generated by all expressions of the form

X(m,ni+na) =~ X(m,n1) = X(m,n2)>

X(mi4+ma,n) = X(mi,n) — X(ma,n)» and

X(mr;n) — X(m,rn)-
Then it is immediately verified that F/U is a tensor product. O
Observation 17.3. The above construction shows that, while not all elements

of the tensor product are elementary tensors themselves, they are finite sums of
elementary tensors.

Example 17.4. Note that both individual elementary tensors and entire tensor
products can be zero, even if they don’t “look like it”:

Consider Z/(2) ®z Z/(3). Take an elementary tensor (a + (2)) ® (b + (3)).
Then

(a+(2) @ (b+(3)) = (a+(2)) ®2(2b+ (3))
=(a+(2)2®(2b+(3))
=0® (20 + (3))
=0®0(20+ (3))
=0®0

Thus all elementary tensors vanish, and hence the entire tensor product is zero.

Construction 17.5. Let f: M; — M5 be a morphism of right R-modules, and
N be a left R-module. Then the composition along the top and right of the
following diagram is R-balanced.

X id
My x N f xidy

MQXN

My ®@r N ------+ > My @r N
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Thus there is a unique map as indicated by the dashed arrow above, making
the diagram commutative. We denote this map by f ®g N. One immediately
verifies that

—®r N: ModR—> Ab

defines a functor.
Similarly, for a right R-module M one obtains a functor

M ®gr —: Mod R°°* —> Ab.
Example 17.6. Let R be any ring, and M € Mod R. Then
M ®r R= M.

Indeed the map M x R—> M : (m,r)F—>mr is clearly R-balanced, thus induces a

homomorphism M ®g R—> M. An inverse is given by M — M Qg R: mF>m®
1.

18 Hom-tensor adjunction

Let M be an R-S-bimodule. Then for any R-module L, the tensor product
L ®r M becomes an S-module via (I ® m)s = [ ® ms. In fact we obtain a
functor

—®r M: Mod R—> Mod S.

Similarly we have the functor
Homg (M, —): Mod S —> Mod R,
where, for an S-module N, the R-module structure on Homg (M, N) is given by
= —).
The following result shows that these two functors are in fact adjoint.

Theorem 18.1. Let L be an R-module, M be an R-S-bimodule, and N be an
S-module. Then

Homg(L ®g M, N) =2 Hompg(L,Homg (M, N)),

and this isomorphism is natural in all arguments.
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Proof. We have mutually inverse maps given by

HomS(L QR M,N) = HomR(L,HomS(M,N))
7 — [(— (¢ @ m)]
[f@mt=>y(f)(m)] < ¥

Corollary 18.2. Let M be an R-S-bimodule. Then the functor

—®r M: Mod R—> Mod S
s right exact.

Proof. Since the functor is left adjoint to Homg(M, —) it commutes with all
colimits. But cokernels are certain colimits. O

Remark 18.3. The above argument also shows that tensor products commute
with (infinite) coproducts.

Definition 18.4. A left R-module M is called flat if the tensor functor — ®p
M: Mod R— Ab is exact.

Observation 18.5. e The R-module R is flat, since, by Example ten-
soring with R is essentially identity.

e Any free R-module is flat, since, by Remark tensoring commutes
with coproducts (which are special colimits), and since the coproduct of
a collection of exact sequences is exact again.

e Any projective R-module is flat, since it is a direct summand of a free
R-module by Theorem [16.9]

Remark 18.6. The converse of the last point above does not hold. For instance
Q is a flat Z module which is not projective.

However, for certain nice rings (for instance finite dimensional algebras over
a field), all flat modules are projective.
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19 Exercises

Exercise II1.1. Let X be a poset, and F a field. By Exercise the category
presh,  qr X is abelian.
For i € X, we consider the special presheaves P; and I; given by

PG) F ifj<i a4 L)) koifg>i
) = ar i - .
J 0 otherwise J 0 otherwise

PatH I:
Verify directly: P; is projective and I; is injective in presh g7 X.

Patu II:
Consider inclusion ¢: {i} ~> X . Show that the induced functor

" preshy gy X —> presh, qr{i} = modF

has a left adjoint L and a right adjoint R.
Check that

e * is exact;
e P, =LF and I, = RF;
e [ is both projective and injective in mod .

Conclude that P; is projective and I; is injective.

INDEPENDENT OF PATH: For X = {a > 0 < b}: Find a projective object P and
an epimorphism P — I in presh,,4p X.

Exercise II1.2. Show that
Z[(m) ®z Z/(n) = Z/(ged(m, n)).
HINT: Recall that (ged(m,n)) = (m,n).
Exercise II1.3. Let L € Mod R, M an R-S-bimodule, and N € Mod S°P.

Show
(LQM)QN=LRMEN).
R S R S

HINT: On elementary tensors, the map from left to right should send (I®@m)®n
to ! ® (m ® n). The main issue is to show that this gives a well-defined map.
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Exercise IT1.4. Let & be an abelian category, and A an object in 7. Convince
yourself that Hom, (A, —) defines a functor &/ — Mod R, where R = End(A).
Now assume that for any object X € 7, the R-module Hom,z (A, X) is
finitely generated. Show (without using the Freyd-Mitchell embedding theo-
rem), that Hom, (A, —): & — mod R has a left adjoint.
HinTs:

e Show that Hom (A4, —) induces an equivalence between the subcategories
{A" |n e N} C & and {R" | n € N} C mod R.

e Show that Hom/ (A, X) is finitely presented as R-module.
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Chapter 1V

Complexes and homology

20 The long exact sequence of homology

Definition 20.1. Let &/ be an abelian category. A (cochain) complex in o is
a sequence of objects and morphisms

d—? d-! d® d!
A':... — A_l — A0—>A1—>...

such that d o d’~' =0 for all 5 € Z.
We denote by C(«7) the category of all complexes in &/, where morphisms
are given by

Homg(u)(A®, B*) = {(f")icz | * € Hom, (A", B') such that
flodiit =d5 o fi7Vie 2},

that is morphisms are commutative diagrams

—92 -1 0 1

dy 4 dy A0 dp A dy
-1 0 1

d5? ! { dit ! { d? ! { dk

B B B B
B—l BO Bl

Note that the category C(&) is also abelian, with kernels and cokernels
being calculated position by position.

63
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Remark 20.2. One defines chain complexes in a very similar way, just using
lower indices and counting down. This distinction comes from the origins of
homological algebra in algebraic topology, where the index often is the dimension
of the objects involved. Thus it is natural that the boundary of an n-dimensional
object is n — 1-dimensional (chain complex) and not the other way around (thus
called cochain complex).

However in our course a complex is just an abstract sequence of objects and
maps, and thus the difference between counting up and counting down is of no
concern to us.

Definition 20.3. For a complex A®, and n € Z, we set
B"(A®*) = Imd" ! and 2" (A®) = Kerd",

called the n-boundaries and n-cycles, respectively.

Note that since, by definition, d" o d*~! = 0, the inclusion B"(A®) <> A"
factors through the inclusion Z"(A®) > A™. We denote by H"(A*) the cokernel
of this map B"(A®) —Z"(A*), and call it n-th homology of A®.

Note that all three of these constructions are functorial.

Remark 20.4. In case that our abelian category « is in fact a category of
modules (or any other category where it makes sense to talk about ‘elements’
of the objects) the above just means that B"(A®) and Z"(A®) are submodules
of A™ such that B®(A®) C Z"(A*®). Now homology is the quotient

H"(A%) = Z"(A°*)/B"(A®).

There are obvious duals to the definition of boundaries, cycles, and homol-
ogy. (These are not what is called coboundaries, cocycles, and cohomology —
coboundaries are just the same as boundaries, but distinguishing between count-
ing up and counting down, see Remark ) However the next lemma tells us
that for homology it does not matter if we take this definition or its dual.

Lemma 20.5. Let A® be a complex in an abelian category. Then the epimor-
phism A™ —>B"T1(A®) factors through the epimorphism A™ —> Cokd"~*, and

H"(A*) = Ker[Cok d"~! —>» B"+1(4*))].

Proof. The factorization follows form d” o d”~! = 0.
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Now consider the following diagram, where K denotes the kernel of the
lemma.

K o N
B"(A®) An Cok dn—1 IJ
Sz (A« An B HL(A®)

B (A%)
By the snake lemma we have a snake morphism as indicated by the dashed

arrow, and it is an isomorphism since both its kernel and cokernel are zero. [

Theorem 20.6 (Long exact sequence of homology). Let A®*>—>B®*—>>C"* be a
short exact sequence in C(&), for some abelian category <. Then there is a
long exact sequence

. HH”(A.)HH”(B.)HH”(C.)4’Hn+1(A.)4’Hn+1(B.)4’

Proof. Note that Z" is left exact, and Cokd™ is right exact. Thus we get exact
sequences in the rows of the following commutative diagram.

Cokd’;™!

Cokdy™!

Cokdy™ ! ——— 0

0 —— Zn+1(Ao) Zn+1(Bo) Zn+1(co)

where the vertical maps are induced by the maps d’, d, and d, respectively.
In particular they are the composition Cok d’ ' —>B"+1(A®) <> Zz"*1(A*®), and
similar for B®* and C®. Thus their cokernels are H"*1(A®), H*T1(B*), and
H"T1(C*), respectively. Moreover, by Lemma m the kernels are H™(A*),
H"(B®), and H"(C"*), respectively. Now the claim follows from the snake lemma.

O
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21 Cones and quasi-isomorphisms

In the setup of Theorem one easily sees that the maps H"(A®) —H"(B*)
and H"(B®) —H"(C*) are just homologies of the original maps in C(«). How-
ever the maps H"(C®) —>H"T!(A®) are induced by the snake morphism of the
snake lemma, and their description is less explicite. We make it explicite here
in the special case that all the short exact sequences A™ >—> B™ —> (C™ are split.

Observation 21.1. Let A®*>> B®—>(C* be a short exact sequence in C(%),
such that
Vn: B"=A"®C"
and the maps are given by (§) and (0 1), respectively.
Then d' is given by a 2 x 2-matrix, say (‘Z: CZ )
In order for the first map to be a morphism of complexes we need

dp o ((1)) = ((1)) ody,
that is a™ = d’; and 0" = 0. Similarly, in order for the second map to be a

morphism of complexes we need b" = 0 and ¢" = d¢.
Finally we require d% o d%fl = 0, with the above that gives

n rn v —1 L —
0= (41", (da f",i _ (0 frodi 4dofm!
0 do 0 dg 0 0

that is f” o (—dj ') = d% o 7L
Conversely we see that any family (f™),cz with this property gives rise to
a short exact sequence as above.

Definition 21.2 (Shift). Let A® be a complex. We denote by A°®[n] the complex
obtained from A® by shifting every term n places to the left, that is with
(A®[n])" = A", and d;.[n] = (-1t
Clearly [n] defines an autoequivalence of C(<7), with inverse [—n].

Also note that H'(A®[n]) = H'T"(A®).
Definition 21.3 (Cone). Let f*: A®* —> B*® be a morphism in C(&7). Then the
cone Cone(f*) is the complex
(5 ) ("5 %) (4 2)
Y — B'g Al i

— B 'aA

0
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By Observation above we note that there is a degree-wise split short
exact sequence

(5) 01)

B* Cone(f*®) —> A°[1].

Moreover any degree-wise split short exact sequence is of this form.

Theorem 21.4. Let f*: A*— B® be a morphism in C(<f). The long exact
sequence of homology associated to the short exact sequence

(5) (01)

B* Cone(f*®) —> A°*[1]
H(f* H (§) H'(0 1
e T e o) T e E O e 4y s

Proof. The fact that the second and third map are just the homologies of the
maps of complexes we started with follows immediately from the construction
of the long exact sequence. We need to check that the first map is indeed the
n-th homology of the map f*.

We follow the construction. To do so, we consider the following diagram
with exact rows, but not columns, where the middle part is just the diagram
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from the proof of Theorem [20.6]

prgan - 3Dz
gt o
0 B" Cone(f*)™ Antl 0
Hn+1(Ao)
Ve
Cok ™ ——— Cokd{ 1 u Cokd’y — 0

0 — Z"F1(B*) —— 771 (Cone(f*)) — Z"+2(A°®)
e
Hn+1(Bo)

0 Brtl Cone(f’)’”l Ant2 0
/ |

Cok d7, (10)  BrilegAnt?

Note that the composition along the columns are just the differentials d%,
ay fr!
( 0 —dytt
Now recall the construction of the snake map from the snake lemma: Us-
ing the splitting indicated by the dashed arrows above, we first consider the
composition

>, and fdfffl, respectively.

ag
(1) ( 0 —djt
Zn+1(A.)>—>An+1 —5 Bn @An—l-l
(10)
— B"*— Cokd}.

Bn+1 @ An+2

Multiplying the matrices we see that this is the composition

fn+1
ZVL(A%) > A" —— Bl s Cok .

Thus the induced map on homology is

Hn+1(f.): Hn+1(A0)4>Hn+1(Bo). |
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Definition 21.5. A morphism f®: A®*— B® in C(«) is called quasi-isomor-
phism if H*(f*) is an isomorphism for all n.

Corollary 21.6. Let f*: A*— B* be a morphism in C(&/). Then f® is a
quasi-isomorphism if and only if the complex Cone(f*®) is exact.

22 Homotopy

Definition 22.1. A morphism f*: A®*— B*® in C(&) is called null-homotopic
if there are morphisms

A" € Hom (A", B""') neZ
such that
VneZ: fr=dytoh™ +h" M ody.
Two morphisms f* and ¢g® in Homgu)(A®, B®) are called homotopic if f* —
g°® is null-homotopic.

e® f
Lemma 22.2. Let A* — B* —(C* 25 D* be morphisms in C(</). If f* is

null-homotopic, then so is the composition g® o f® o e®.

Proof. By definition we have maps A’ such that " = dgﬁl o h™ 4+ h"tl o dp.
We choose h™ = g" " o h™ 0 e™. Then
d%fl O%n +En+1 Odz _ d%fl Ogn—l oh™ o e” +gn Ohn+1 o en+1 o dz
—— ———
:g"odg’l =d}oe™
:gno(d’gflohn—f—hn"_lod%)oen
O

Definition 22.3. Let o/ be an abelian category. The homotopy category K (<)
is given by

W K(F) =06 C() and

. . HOIHC of (A.,B.)

homotopy
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that is morphisms are considered the same if their difference is null-homotopic.
Lemma shows that this indeed is a category, by making sure that mul-
tiplication of morphisms is well-defined.
It follows from the definition that K (%) inherits the structure of an additive
category from C(«) - the Hom-sets are by definition quotient abelian groups.
However K (&) will typically not be abelian.

Proposition 22.4. Let f*: A®*— B® be null-homotopic. Then H"(f*) =0 for
alln e Z.
In particular the H" define functors K(«/)— < .

Proof. By assumption there are 2™ such that f* = d o h” + k"' o d'y.
First let ¢t4: Z"(A®)>> A", and similar for t5. Then Z"(f*) is defined by

Lo Z"(f*) = f"oua
Inserting the above formula for f™ we obtain that this is equal to
dgfl oh"ouig +h" T odior = d%fl oh™ouy.
=0

Now note that this map clearly factors through B"(B®)>— B"™, and thus the
induced map on homology vanishes. O

23 Projective and injective resolutions

Definition 23.1. An abelian category &/ has enough projectives if for any
A € Ob & there is an epimorphism P —> A from a projective object P to A.

Dually &7 has enough injectives if for any A € Ob &/ there is a monomor-
phism A>—1TI from A to some injective object I.

Example 23.2. Let R be a ring. The category Mod R has enough projectives
and enough injectives.

Proposition 23.3. Let (X, <) be a finite partially ordered set, and <7 an abelian
category.

If o/ has enough projectives, then so does presh, X. Dually, if o/ has
enough injectives, then so does presh, X.
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Proof. We show that presh, X has enough projectives, the claim about injec-
tives is dual. For a A € Ob.«7 and i € X we define a presheaf P/ by

P.A(j):{A if j <

t 0  otherwise.

One easily sees that
Hompresh , x (P, M) = Hom,, (A, M(i)).

Therefore P is projective provided A is projective in 7.

Now let M be an arbitrary «/-valued presheaf on X. For i € X, let
A; —> M (i) be an epimorphism from a projective object in «/. We set P =
Dicx PiA’. Then P is projective, and there is an epimorphism P—> M in
presh, X. O

Definition 23.4. Let &/ be an abelian category with enough projectives, and
let A€ o/. A projective resolution of A is a complex

d—2 d—!
. —»P_Q — P_l — PO—>0—>O—>
with projective terms, which is exact, except in postion 0, where Cokd~! = A.
Dually, if &/ has enough injectives then an injective resolution of A is a
complex

. *»0*»0*»[0*»‘[1*»]2*>
with injective terms, which is exact, except in position 0, where Ker d° = A.

Observation 23.5. Let o/ be an abelian category with enough projectives.
Then any object A € & has a projective resolution. This can be constructed
iteratedly: Start with an epimorphism PY—> A, and call A~! its kernel. Given
A?, take an epimorphism P’—> A’ and call A*~! its kernel. Concatenating
these short exact sequences we obtain a projective resolution.

Dually, if o7 has enough injectives, then any object has an injective resolu-
tion.

Construction 23.6. Let A and B be objects in an abelian category having
enough projectives. Let P§ and Pg be projective resolutions of A and B, respec-

!
tively. Given a morphism A— B, we construct (non-canonically) a morphism
Pp: P§—> P}, such that H(P}) = f:
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In the diagram below we construct the vertical morphisms from right to left,
starting with the given morphism f, such that everything commutes.

Py Pyt Py
N T N N
! A2 ! AL ! A
sz : Pl;l : PO f
~S v 7 ~ v L7 Ny
B2 B! B

Here we obtain the morphisms P, "™ — Pg" using that P,™ is projective, and
thus the composition P, "™ —> A~" — B~" may be factored through the epi-
morphism P5™ —> B~". The morphisms A™" — B~" are kernel morphisms.
Theorem 23.7. Let &/ have enough projectives. Then taking projective reso-
lutions defines a functor

p: &/ — K(«),
such that H® op = id and H" op = 0 for n # 0.

Dually, if &/ has enough injectives we can define an injective resolution

functor

i —K(A),
such that H oi =idy and H* 0 i =0 for n # 0.
Proof. We have to show that there is a unique map P]? : P§— Pp3 as in the

construction above, for any f: A— B. Taking differences it is enough to show
this for f = 0.
So consider the solid part of the following commutative diagram

P;? Pyt P}
- /// . \
f72 p-ves ST pot A
RO S0
g e 0
Py? Pyt Py,

N YT S Y
-1

B
N
B2 B B
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Since the composition of f© with the epimorphism PY —> B vanishes we see that
10 factors as indicated by the rightmost dotted map above. Moreover, since P}
is projective, we can lift this dotted map along the epimorphism Pg 1> p-1
to obtain a map h° as above such that d;; oh0 = 0,

Now observe that dp! o (f~' —hCodpt) =dpl o f' = fOody! =0. Thus
ft—no od;; factors through the kernel B—2>— Pgl as indicated by the second
dotted arrow. Since Pgl is projective we may lift this along the epimorphism
P§2 —> B2, and obtain a morphism k™! such that d;ﬁ oh™t=jf"1_p Odl;i’
or, in other words,

-1 0 -1 -2 ;-1

f :h OdPA+dPBOh .
We iterate this construction to obtain a homotopy, thus showing that the map
of complexes we started with is in fact null-homotopic. O

Proposition 23.8 (Horseshoe lemma). Let A>—>B—>C be a short exact se-
quence in an abelian category. Assume P4 and P& are projective resolutions of A
and C, respectively. Then there is a projective resolution Py with Ph = P4 PL,
such that the following diagram commutes:

P2 P! P4 A

(01) (01) (01)

P;? P! P C

Remark 23.9. In other words, the horseshoe lemma says that Pg may be
chosen as the cone of a certain map from P2[—1] to Pj.

Proof. Tt suffices to consider the first step, and then iterate. Let us denote the
b

given maps by A>E>B»>C7 and 74: P§—> A and nc: P2 —>C. Since PY is

projective there is a map 7¢: Pg —> B such that b o mc = m¢. It follows that

(aoma 7c) is a map P4 & P2 — B making the right part of the diagram above
commutative. It follows from the five lemma (Theorem [14.1]) that this also is
an epimorphism.
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Finally note that, by the snake lemma, the kernels also form a short exact
sequence, so we may iterate the argument. O

24 Exercises

Exercise IV.1. Consider the poset

(Here “2” is short for “the map given by multiplication by 27.)
Calculate all homologies of this complex.

Exercise IV.2. Let & be an abelian category. Consider a morphism of com-
plexes over o7, of the form

]

Assume this is a quasi-isomorphism.
Show that B® = B~! @ A, such that the two non-zero maps above are the
canonical inclusions.

Exercise IV.3. Consider the X as below, and a field F. Calculate a projective
resolution of I, in presh,  qr X (see Exercise [[II.1)).
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1. For X = {0 < w};
w
VRN
2. For X ={a b}.
\O/

Exercise IV.4. Let A* € C(«/) be a complex such that H'(A®) = 0 for all
negative i. Show that there is a complex B® such that B? = 0 for all negative
1, and a quasi-isomorphism A® — B®.

HINT: You can take B? = A’ for all positive i. What is a good choice for
BY?

Exercise IV.5. Let f*: A*— B*® be a morphism of complexes. Show that
B* — Cone(f*) is a weak cokernel of f* in the homotopy category K ().

f
That is, the composition A®* — B®* —> Cone(f*) is zero, and for any mor-
phism ¢°*: B®* — C*® such that ¢®* o f®* = 0 in K(&) there is a (not necessarily
unique) factorization

A® I B* Cone(f*)

T

Exercise IV.6. Let & be an abelian category. Let A®* € C(&/). Show that
A* 20 in K(&) if and only if A® is isomorphic to a complex of the form

00 00 00 00
(140)) Blq B (90) B0 o B! (96) B' o B? (99)

v
C.

HiINT: For the “only if” direction, consider the short exact sequences

0—>B"(A*) — A" — B"T!(4*) —0.
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Chapter V

Derived functors

25 Definition and first properties

Let o7 and % be abelian categories, and F: &7 — % an (additive) functor. Then

F also induces a functor Fk : K(&7) — K(Z#). We use this construction to define
derived functors.

Definition 25.1. Let F: & — % be a right exact functor. Assume that &7 has
enough projectives. Then we define the n-th left derived functor of F by

L,F=H "oFkop.

That is, we take a projective resolution of the object, apply our functor to this
projective resolution, and then consider the homology groups of the result.

Dually, if F: & — % is left exact and &/ has enough injectives, we can
construct right derived functors as

R"F =H" o Fk o i.

Lemma 25.2. Let o/ have enough projectives, and let F: of — 9B be right
exact. Then LoF is naturally isomorphic to F.
Dually, if & has enough injectives and the functor is left exact, then ROF =

nat

F.

Proof. We follow the definition of LgF:

"
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d
Let A € Obo/, and let --- — P~1 — P be a projective resolution of A.
Then A = Cokd. We apply F, and see that

Fd
LoFA =H(--- —FP~!' —>FP,) = CokFd.
But since F is right exact we have

CokFd =2 F(Cokd) =FA. O

Lemma 25.3. Let &/ have enough projectives, and let F: o/ — A be exact.
Then L,,F = 0 for all non-zero n.

Dually, if & has enough injectives and the functor is exact, then R"F = 0
except for n = 0.

Proof. Since the functor is exact it commutes with taking homology. That is

Foidy ifn=0

L,F=H "oFkop=FoH "op=
KoP P {Fo() if 0 #0

O

Example 25.4. For the functors Hom and ® the derived functors have special
names:

Ext?,(A,—) =R"Homg (A, —)
Ext?, (—, A) = R" Homg (—, A)
Tor® (M, -) =L, (M @5 —)

)

Torf(—,N) =L, (- ®&r N)

In the second line, note that we consider Hom (—, A) as a left exact func-

tor @/°P — Ab. In particular we calculate the derived functors by taking an
injective resolution in 7°P, that is a projective resolution in 7.

We will see later that Ext", (A, —)(B) = Extl,(—, B)(A), and will simply
denote this by Ext”, (A, B). (And similar for Tor.)

Example 25.5. We calculate Tor?(Z/(n), —)(Z/(m)):
We start with a projective resolution of Z/(m). The simplest one is given

by 0—Z ~> Z—>0.
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Now we apply the (non-derived) functor Z/(n) ®z —, and obtain the complex
0—Z/(n) — Z/(n) —> 0. The kernel of the non-zero map here is

(n/ged(m, n))/(n) = Z/(ged(m, n)),

and the cokernel is also Z/(ged(m,n)). Thus

Z/(ged(m,n)) if i € {0,1}
0 otherwise.

Tor}(Z/(n), =)(Z/(m)) = {

Theorem 25.6. Let </ have enough projectives, and let F: of — % be right
exact.

For any short exact sequence A>>B—>C in & there is a long exact se-
quence

in A.

Proof. By the horseshoe lemma (Proposition [23.8) we may find projective res-
olutions of A, B, and C fitting into a diagram as follows:
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Now, applying F to these projective resolutions, we obtain the diagram

FP,> FP,* FP§

(01) (01) (01)

—2 -1 0
FP FP FPY

Note that while F is not exact, it does preserve direct sums and split short exact
sequences.

Now the long exact sequence of the theorem is just the long exact sequence
of homology (Theorem [20.6). O

26 Syzygies and dimension shift

Observation 26.1. Let F: o — 2% be right exact, and assume that </ has
enough projectives.

Then IL;FP = 0 for all non-zero ¢ and any projective P. (To see this, note
that 0— P—>0 is a projective resolution.)

The aim of this section is to combine this observation with the long exact
sequence of derived functors.

Definition 26.2. Let ./ be abelian with enough projectives. For an object A,
we construct a syzygy of A as the kernel of an epimorphism from a projective
object to A, and denote it by QA. That is, by definition we have a short exact
sequence

0—QA—P—A—0
with P projective.
Remark 26.3. Note that 24 is not uniquely determined by A: different epi-
morphisms from projectives may give different syzygies.

In particular €2 is not a functor. (It may be applied to morphisms, but this
again involves making choices.)
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It can be seen that  defines an auto-functor of the quotient category

o

morphisms factoring through *
projective objects

Definition 26.4. Dually, if &/ has enough injectives, we define the cosyzygy of
an object A to be the cokernel of a monomorphism of A into an injective object.
The cosyzygy will be denoted by UA.

Remark 26.5. It is more usual to denote cosyzygies by Q~!. However is should
be noted that syzygy and cosyzygy are in general not mutually inverse to each
other, which this notation seems to suggest.

Theorem 26.6 (Dimension shift). Let F: o7 — % be right exact, and assume
that o/ has enough projectives. Let A € Obo/. Then

L,FA = L,_1F(QA) VYn > 2.

Moreover, given a short evact sequence QA>—> P —> A with P projective, we
have
L,FA = Ker[F(QA) —FP).

Proof. We consider the short exact sequence QA >—> P —> A, and the long exact
sequence of derived functors associated to it. For n > 2 we obtain

0=L,FP—>L,FA—>L,_F(QA)—>L,_FP =0,

and thus the first claim.
For n = 1 we have the exact sequence

0= ]LlFP - H_QFA - F(QA) - FP,
and thus the second claim. O

We also have the dual for left exact functors:

Theorem 26.7. Let F: of — A be left exact, and assume that </ has enough
injectives. Let A € Ob.of. Then

R"FA = R"'F(UA) Vn > 2.
Moreover, given a short exact sequence A>> 1 —>UCA with I injective, we have

R'FA = Cok[FI —> F(UA)].
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27 Ext' and extensions

Let o/ be an abelian category, and A and B objects. We denote by & the
collection of all short exact sequences

E:0—B—FE—A—0

for some FE.
We consider two short exact sequences E; and E, equivalent if there is a
commutative diagram

0 B E, A 0
|+
0 B Ey A 0

Note that by the five lemma the map ¢ necessarily is an isomorphism. Using
this fact one may see that the above definition indeed gives rise to an equivalence
relation.

Definition 27.1. The Yoneda-Ezxtension group is the collection of equivalence
classes
YExtl,(A,B) =&/ ~.

To explain why this is a group, we first discuss that it is functorial in both
A and B:

Construction 27.2. Let f: By — B;. Then taking pushouts gives a map
YExt!, (A, By) — YExtl, (A, By), denoted by f - —:

E: 0 By E A 0
f-E: 0——> By ——> Bl E——>A——0

Here we use that pushouts of monos are mono, and have the same cokernel.
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Dually, if g: A3 — Ay, taking pullbacks gives a map
—-g: YExt. (A, B)—> YExt!, (A, B).

It is possible to see that these constructions commute: (f-E)-g = f-(E-g).
Hence we may omit brackets in this setup.

Definition 27.3 (Baer sum). Let E; and E; be in YExtl, (A, B). We first
define their coproduct to be

E,®Ey;: 0—B®B—FE ®E,— A®A—0¢c YExt, (A® A, B® B),

where all maps are diagonal.
Now the Baer sum of E; and Eq is

Ei+Ey=(11)-(E, @Ey)- (1) € YExtL (A, B).

Theorem 27.4. The Yoneda-Ext of two objects, together with Baer sum, forms
an abelian group (provided it is a set). The zero-element of this abelian group
is given by the split short exact sequence.

This group structure turns YExt}Z{ into an additive functor o/°P x of — Ab.

Proof. 1t is clear from the construction that the Baer sum is commutative.
For E;,Ey, B3 € YExt!, (A, B) one may see that

Ei+Ey+Es=(111)-(E, E;y @ Eg) - (%)

independent of brackets, that is Baer sum is associative.

Next we observe that for any short exact sequence E we have that both 0-E
and E - 0 are split short exact. Indeed we have the following pushout diagram

E 0 B E A 0
‘0 (0)
(5) (01
0-E 0 By —2 > By A A——0

(and a similar one for the case of pullbacks along zero-morphisms).
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Now we check that for two maps f and g from B; to By, and an extension
E € YExt! (A, By), we have (f + g) -E= f-E+g-E. As a first step, consider
the commutative diagram

E: 0 By E A 0
(1) J\(%)
(1)-E: 0 B, ® B, E A 0
/ (1)
v
EQE: 0 B & By Fao FE A A 0

where the dashed arrow exists by the pushout property of the upper left square.
We see that

(1) E=EsE)-(1).

Now we calculate

[ E+g-E=(11)-(f-E®g-E)-(})
=(fg9) - E®E)-(})
=(fg9)({)-E
=(f+9)E

Finally we use the above observations to verify that the split exact sequences
are a neutral element, and that there are inverses:

Let E € YExt}Qf(A, B), and let Egpy; denote the split exact sequence between
the same two objects. Then

E+Epit =1-E+0-E=(140)-E=E.
Similarly we check that (—1) - E is an inverse of E:
E+(-1)-E=(1-1)-E=0-E
is the split exact sequence. O
Theorem 27.5. Assume </ has enough projectives. Then
YExt!, (4, B) = Ext!,(—, B)(A).
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Dually, if o/ has enough injectives then
YExt., (A, B) = Extl, (A, —)(B).
In particular if </ has both enough projectives and enough injectives then
Extl, (-, B)(A) = ExtL, (A, —)(B).

Proof. We prove the first claim. The second one is dual, and the third one then
follows immediately.
Consider a short exact sequence

Ep: 0—>QA—>P—> A—>0

with P projective. We may consider this an element of YExt!, (A4, QA).
Now multiplication with E, gives a map

—-E,: Hom, (QA, B)— YExt!, (A, B).

We claim that this map is surjective, and that its kernel consist precisely of the
morphisms factoring through ¢.
To see surjectivity, consider the following diagram for any E € YExt., (A, B):

Ey: 0 QA

f
v
E: 0 B

A 0

P
’
E A 0

Here the right dashed arrow exists by the lifting property of projectives, and
the left dashed arrow is a kernel morphism. It follows from the characterization
of pushouts (see Theorem that the left square is a pushout, that is that
E = f - E, for the morphism f found in the diagram.

To determine the kernel of the map — - E,, note that a morphism f is in the
kernel if and only if we can find a commutative diagram

E,: 0 o p— il

P
f (1)
1 1%
(B, L5, O

A 0

A—0
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By commutativity of the right square we need s = m, and then the left square
commutes if and only if 7ot = f. It follows that the kernel consists precisely of
the maps factoring through ¢.

But, by dimension-shift (see Theorem we have

Ext!,(—, B)(A) = Cok[Hom,, (P, B) — Hom,, (QA, B)],
that is Ext,(—, B)(A) is also the quotient of Hom . (Q24, B) modulo morphisms
factoring through ¢. O
28 Total complexes - balancing Tor and Ext

Definition 28.1. A double complex is an infinite commutative square pattern

m—1,n—2 m,n—1 m+1,n—1
dV dV dV
d;n,—Z,n—l ;n,—l,n—l d{]n,n—l d;:1+1,n—1
mel,nfl Xm,nfl Xm+1,n71 B I
d");n,—l,n—l d:}n,nfl d:,n+1‘n—1
m—2,n m—1,n m,n m+1,n
dh dh dh dh
Xm_l’n X msn Xm-‘,—l,n P N
d;r]nfl,n dmn d:,n«l»l,n
d;nfz,n#»l d}:n,fl,ni»l d;]rz,,n+1 dhm+1,n+1
mel,nqtl Xm,nJrl Xm+1,n+1 B

d:}n—l‘ni»l dcn,n#»l d:/n+1‘n+1

such that the composition of any two vertical or any two horizontal morphisms
vanishes.
In other words, a double complex is just an object in the category C(C()).

Definition 28.2. Let X*® be a double complex, and assume that for any s, the
infinite coproduct [],, ., X™*~™ exists. (For instance this is true if on every
diagonal there are only finitely many non-zero objects.)
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Then the total complex of X** is given by

TOt(X.’.)S _ H )(rn,sfrn7
meZ

with the differential given on components by

dm-s—m ifm' =m
’ ’
XTSI s XTSI (1) T i = m+ 1
0 otherwise.

Remark 28.3. Note that cones are a special case of total complexes, where the
only non-zero objects lie in rows —1 and 0.

Proposition 28.4. Let X** be a double complex concentrated in finitely many
rows. (That is there are a < b such that X™™ = 0 whenever n < a orn >b.)
Assume that all rows of X** are exact. Then the total complex Tot(X**®) is
exact.

Proof. Let

ymn Xmn  ifn>a
0 ifn<a

that is Y'**® is obtained from X** by removing the top non-zero row.
Then one may observe that there is a natural map

£ X% —a — 1] — Tot(Y**)

and
Tot(X**) = Cone(f*®).

Now we may assume inductively that Tot(Y**) is exact, and it then follows
from the long exact sequence of homology that also all homologies of Tot(X**)
vanish. O]

Corollary 28.5. Let X** be a double complex such that all diagonals are finite.
(That is for any s there are only finitely many m such that X™5~™ #£ 0.)
Assume all rows of X** are exact. Then the total complex Tot(X**®) is exact.

Proof. For any given position, we may disregard the rows of X** such that
Xs7™" = (). Hence exactness in position s follows from Proposition above.
Since this applies to any given position the entire complex is exact. O
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Theorem 28.6 (Balancing Ext). Let o/ be an abelian category with enough
projectives and enough injectives. Then for any A, B € Ob o/

Ext™, (A, —)(B) = Ext", (—, B)(A).

Proof. We choose a projective resolution P*® of A, and an injective resolution
I°® of B.

Recall that the two Ext-groups of the theorem are by definition the homolo-
gies of Homg (A, I*) and Hom, (P®, B), respectively. We will connect these
two complexes via the third complex Tot(Hom (P*,I*)), showing that there
are two quasi-isomorphisms

Hom (P*®, B) —> Tot(Homg (P°*,I*)) <— Hom (A, I°®).

It then follows immediately that all three complexes have the same homologies.

We denote the exact complex

.*»Pflﬂp()*»A*»O*»...

by ?., and similarly the exact complex

by T.
We consider the double complex Hom,, (P",T"), and its versions with P*
instead of P° and I*® instead of T". (In the following picture we write (X,Y)
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for Hom . (X,Y’) to save space.)

(A, B) »—?—> (P°, B) (P',B) (P2, B)
PSS I SN
(A, 1Y) (PO, 1) (P 1) (P2, 1)

(A, I?) ———— (PY 1?) (P, 1?%) (P2 1?%)

We note that

Y/77077777777777777.
Y777777727777777777.
¥777777777777777777.
Y777777727777777777.
¥777777777777777777.
Y777777727777777777.

-0
L] .
Homg (P*, I ) = ---4£55555555 exact columns
’ ¥000000000005000007:

2 — exact total complex

v 777 77 7.
Y777 777777777777777.
Y7777 77777777777777.
Y7177 7007027777

and

exact rows

— exact total complex

On the other hand there is the morphism Hom, (P*®, B) — Tot(Hom, (P*,I*))
(essentially given by the morphisms crossing the vertical dashed line above),
whose cone is Tot(Hom,,(P*,T°)). In particular the cone is exact, so the mor-
phism is a quasi-isomorphism.
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Similarly the natural morphism Hom (A, I*)— Tot(Hom (P*,I*)) is a
quasi-isomorphism, since its cone Tot(Hom (?., I*) is exact.
Now the two quasi-isomorphisms

Hom, (P°®, B) —> Tot(Hom (P*,1°)) <— Hom (A, I°®)
give rise to isomorphisms
H™"(Homg (P°®, B)) 2 H " (Tot(Hom (P°®,I*))) 2 H " (Hom. (4, I*)).

Now note that the left hand term is by definition Ext”,(—, B)(A), while the
right hand term is Ext’, (A, —)(B). O

Theorem 28.7 (Balancing Tor). Let R be ring, M a right and N a left R-
module. Then
Tor (M, —)(N) = Tor[(—, N)(M).

Proof. The proof is very similar to the proof of Theorem above. Here we
start with two projective resolutions Py, and Py of M and N respectively. We
then proceed as before to show that we have quasi-isomorphisms

M @p Py —> Tot(Py; @r Py) <— P @g N.

It then follows that the homologies of all three complexes coincide. O

29 Small global dimension

Throughout this section, let & be an abelian category that has enough projec-
tives or enough injectives.

Definition 29.1. The global dimension of <f is
gl.dim e/ =sup{n € Ny | A, B € O &/ : Ext’y,(A, B) # 0} € No U {o0}.
An abelian category is called
o semisimple if gl.dim .o/ = 0;
e hereditary if gl.dim &/ < 1.

Proposition 29.2. The following are equivalent:
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(1) < is semisimple;

(2) all objects in of are projective;

(8) all objects in o/ are injective;

(4) all epimorphisms in < are split epimorphisms;

(5) all monomorphisms in < are split monomorphisms.

Proof. We show (1) = (5) = (3) = (1). The proof of (1) = (4) =
(2) = (1) is similar.

Assume first that o7 is semisimple. Then YExt!, = 0, hence all short exact
sequences split. In particular any monomorphism splits.

If any monomorphism splits then the lifting property for injectives is auto-
matic, so all objects are injective.

Finally, if all objects are injective, then Ext'y, (A, —)(B) = 0 for all n > 0.
(Note that B is its own injective resolution.) O

Example 29.3. Let F be a field. Then both Mod F and modF are semisimple
abelian categories.

Definition 29.4. Assume &/ has enough projectives. Then the projective di-
mension pd A of an object A is the smallest n, such that A has a projective
resolution of the form

(We say pd A = oo if all projective resolutions of A are infinite.)
Dually, if &7 has enough injectives, then the injective dimension id A of an
object A is the smallest n such that A has an injective resolution

Remark 29.5. Clearly an object A is projective if and only if pd A = 0, and
injective if and only if id A = 0.

Theorem 29.6. Assume </ has enough projectives, and let A € Ob.o/. Then

pd A =sup{n € Ny | 3B € &b «7: Ext, (A, B) # 0}.
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Proof. 1f pd A = n then Ext’,(A, B) = 0 for any i > n, and thus we have the
inequality >.

Assume now that Ext’, (A, —) = 0 for some i. By dimension shift it follows
that Extl, (214, —) = 0. Interpreting this as Yoneda-Ext, we see that any
epimorphism to Q*~1' A splits, that is that Q"' A is projective.

Now we have a projective resolution of length i — 1, given by

0—QA— P> i—s ... —P'—
showing that pd A < i — 1. O
We also have the dual of the above theorem:

Theorem 29.7. Assume o/ has enough injectives, and let A € Qb of. Then
idA =sup{n e Ny |3IB € O« Ext,(B,A) #0}.
Corollary 29.8. Assume o/ has enough projectives. Then
gl.dim .« = sup{pd A | A € Ob o}.
Dually, if & has enough injectives, then
gl.dim.o/ = sup{idA | A€ Ob &}.

Proposition 29.9. Assume <« has enough projectives. Then <f is hereditary
if and only if all subobjects of projective objects are projective.

Remark 29.10. This explains the name “hereditary”: subobjects inherit the
property of being projective.

Proof. Assume first that any subobject of a projective is projective. Then it
follows that any object has a projective resolution with at most two non-zero
terms. Thus . is hereditary by Corollary

Assume conversely that 7 is hereditary, and let A>—> P be a subobject of a
projective. We denote by P/A the cokernel of this inclusion, and observe that

Ext!, (A, —) = Ext?,(P/A,—) =0

where the first equality is dimension shift, and the latter comes from the defi-
nition of hereditary. It follows that A is projective. O
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Theorem 29.11. Let R be right noetherian. Then the category mod R of finitely
generated right R-modules is hereditary if and only if all right ideals of R are
projective.

Proof. “only if” is clear, since right ideals are submodules of the projective
module R.

“if”: Tt suffices to show that any submodule of R™ is projective (since all
projective objects are direct summands of free modules). We show this by
induction on n, the case n = 1 holding by assumption.

Let M be a submodule of R™, and consider the split short exact sequence

0—R—> ROR" ! —R"1—0.
uRn

We denote by I and K the image and kernel of the composition M — R"~1.
Thus we have the following commutative diagram

K M I
| ] [
v
R R™ Rn— 1

where the dashed map is the kernel morphism, and it is mono by commutativity
of the left square.

Now inductively both K and I are projective, hence the upper short exact
sequence splits, and M = K @ I also is projective. O

Remark 29.12. More generally, one can show that the category Mod R is
hereditary if and only if all right ideals of R are projective.

Example 29.13. Let R be a principal ideal domain. (That is a commuta-
tive ring without zero-divisors, such that every ideal is generated by a single
element.) Then Mod R is hereditary.

In particular Mod Z is hereditary, and for any field F the category of modules
over the polynomial ring Mod F[X] is hereditary.

Remark 29.14. One can show that for a field IF, one has

gl.dimF[X1, ..., X,] = d.
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30 Exercises

Exercise V.1. Calculate
e Exty(—,Z/(b))(Z/(a)) for alle a,b,n € N;

o Extpoon . x(—Fo)(lw) for all n € N, where X is the poset from Exer-

cise

Exercise V.2. Let R as below, and S be the R-module which is F as F-vector
space, with all variables acting as 0. Calculate all Ext’(S,.S) for n > 0.

e R=TF[X];

o R=TF[X]/(X?);

e R=F[X,Y];

o R=TF[X,Y]/(XY).

Exercise V.3. Let R = F[X,Y]/(XY) for some field F, and M = R/(X).
Calculate Extsz(M, M) for all n € N.

Exercise V.4 (Balancing Ext). The aim of this exercise is to give a different
(arguably simpler) proof for the fact that Ext is independent of with respect to
which argument we derive the Hom-functor.

Let o/ be an abelian category with enough projectives.

e For a short exact sequence A>> B —>(, and an object X, show that
there is a long exact sequence

- — Ext?, (-, A)(X) — Ext’,(—, B)(X) — Extly,(—, C)(X)
e Bxt (=, A)(X) — Ext? (=, B)(X) — Bxt(—,C)(X) = ---
e Show that Ext?,(—,I)(X) = 0 for all positive n, if I is injective.

e Show that there is dimension shift with respect to the “inner” argument,
that is provided we have a short exact sequence

0—A—I1—>0A—0
with I injective, then

Ext™ '(—, 0A)(X) if n > 2

Extf, (—, A)(X) = {Cok[Homm(Xv I)— Hom,(X,04)] ifn=1
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e Assume now that &/ in addition has enough injectives. Show that

Ext™ (—, A)(X) = Ext" (X, —)(A).

Exercise V.5. Let o/ be an abelian category with enough injectives. We
consider the category of morphisms in 7,

mor(e/) = presh, {1 < 2}.
e Convince yourself that Ker defines a left exact functor mor(e/) — <.

e Find out what the right derived functors R™ Ker are.

HiINT: First consider the case that the morphism in question is an epimorphism.
Then generalize to arbitrary morphisms using a short exact sequence in mor(.«7)
where the other two objects are epimorphisms.

Exercise V.6. Calculate explicitly (i.e. by classifying equivalence classes of
short exact sequences) the following Yoneda-extension groups.

e YExth, (Z/(2),Z/(3)),
o YExth,(Z/(2),Z/(2)),
e YExt! (1o, Po), where X = {0 < w}.

presh,qp X
(By genereal theory, these should coincide with the Ext calculated via projective
resolutions in Exercise [V.1])

Exercise V.7 (A short spectral sequence). Consider a double complex X**
with X" = 0 unless m,n € {—1,0} — that is essentially a commutative square

—1,-1
h

X*l,fl XO,fl
d:lv-w Jd&-l
—1,0
dh
X—l,O XO’O

We consider the kernels and cokernels of the horizontal maps, and denote by
k: Kerd, "' — Kerd, "% and ¢: Cokd, """ — Cokd; "* the kernel and cok-
ernel morphism, respectively.

Show that
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e H72(Tot(X**)) = Kerk;
e There is a short exact sequence Cok k>>H~!(Tot(X**)) = Kerc;
e H°(Tot(X**)) = Coke.

Exercise V.8. Let R = F[X,Y]/(XY) for some field F. Consider the double
complex X** given by

X ifm+neven

X™" =R, d;n’" =dy" = .
Y ifm-+nodd

Show that all rows and all columns of X** are exact, but its total complex is
not exact.

Exercise V.9. Let R be a ring, and X** a double complex of R-modules.
assume that X" = 0 whenever n > 0. (That is X** is concentrated on the
upper half plane.) Show that if all rows of X** are exact then so is its total
complex.

Exercise V.10. Let o/ be an abelian category with enough projectives. Con-
sider two short exact sequences C>—>F —> B and B>—~>FE —> A.

Assume that Ext?,(A,C) = 0.

Show that there is an object X completing the following diagram as indicated
by the dashed arrows.

C F B
| I
C»----- > X ------ > F
¥ J
A A

(That is, in the resulting diagram all squares commute and all rows and columns
are short exact sequences.)

Exercise V.11. Let &/ be an abelian category with enough projectives. Show
that gl.dim &/ < 2 if and only if any morphism between projectives has a pro-
jective kernel.
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Exercise V.12. Let o/ be an abelian category with enough projectives. Show
that
gl.dim presh , {0 < w} = gl.dim &7 + 1.
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Chapter VI

Triangulated categories

31 Motivation — triangles in the homotopy cat-
egory

Throughout this section, let o7 be an abelian category. We have seen that for
a morphism of complexes f*

aoLipe Cone(f*) —> A®[1]

is a complex in K(.&7), giving rise to a long exact sequence of homology.
Now we take a different point of view, and say we consider the infinite
complex

-~ A*[n] —> B*[n] —> Cone(f*)[n]
—> A*n+1]—> B®[n+ 1] —> Cone(f*)[n+ 1] —> ---

in the homotopy category. Since this complex is (up to shift) 3-periodic, we
denote it by the triangle of objects and morphisms

A.

B.

(f°)

99

Cone
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(where the decorated arrow indicates that this represents a morphism to A®[1]).
The next result shows that, while the triangle is defined starting with f*, it
has no preferred side.

Proposition 31.1. Let
L] f. L] L. L] ﬂ-. L]
A®* —> B* —> Cone(f*) — A°®[1]

be a triangle as above, that is ™ = (}) and 7™ = (0 1) for all n.

Then there is an isomorphism ¢®: Cone(:*) —> A®*[1] in K(&) such that the
following diagram commutes.

B* a Cone(f*) () Cone(¢*) ©D B*[1]
e
B Cone(f) — T avpy 0L ey

Proof. We start by calculating that
Cone(t*)" = Cone(f*)" @ B"™! = B¢ A"*! ¢ B!

. ar, frtl 1
dr ([ doonecrey "1 _ (;B_dn+1 0
Cone(t®) — 0 _gntt ) — A .
B 0 0 —dp'!

and

We consider the morphisms ¢®: Cone(t*) — A°®[1] given by ¢" = (0 1 0) and
0
®: A*[1]— Cone(®) given by ¢" = (7f}‘+1 ) A straightforward calculation

shows that these are indeed morphisms of complexes.
Now we check the following four claims:

(1) The square

Cone(f*) () Cone(:*)
<p.
Cone(f*) ’ A*[1]

commutes in the category C(&).
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(2) The square

01
Cone(¢*) 1 B*[1]
arp I ey

commutes in the category C(&).
(3) ¢®o1* =1 in the category C(&).
(4) 1 —1)*® o ¢* is null homotopic.

(1), (2), and (3) are straightforward matrix calculations, which are left to the
reader. We only check (4) here. First we calculate

o= (1) ()= (33,

Now we set h"* = (§ (é) : Cone(:*)™ — Cone(.*)" ! and see that

oo

n—1 n n+1 n
dCone(L‘) oh™+h o dConc(L‘)

d fn+l 1 dy f’n.+l 1
. i 000 000 —
=|( 0 —d} 0 0|l 000)+{000)o| 0 —dj 0
gt 100 100 0 0 —dut!

(e}

Now note that (3) and (4) together imply that ¢* and ¢* are mutually
inverse isomorphisms in K(), and thus (2) implies that also the rightmost
square in the proposition commutes up to homotopy. O

32 Definition

Definition 32.1. A triangulated category is an additive category .7, together
with an autoequivalence [1]: & — .7, and a class A of diagrams of the form

;
X5y 2 7% X[1] such that
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(T1) e For any morphism f: X —Y in , there is a diagram

xLoyv s xpy
in A.

id
e For any object X, the diagram X — X —0—X]1] is in A.

e A is closed under isomorphisms.

!
(T2) For any diagram Xy ZLX[I] in A also the diagrams

are in A.

(T3) Given the solid part of a diagram

X Y VA X[1]
u| v w i u[lw
X’ Y’ é' X'[1]

where the square commutes, and the rows are in A, one can always find

a morphism w as indicated above such that the entire diagram becomes
commutative.

(T4) Octahedral aziom: Given the solid part of the following diagram, where
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the two rows and the left column are in A,

x— Ly z X1
X Z Y X1
i i
X' Xy
h
vig— 2

there are morphisms as indicated by the dashed arrows, such that also the
second column is in A, and the entire diagram commutes.

Remark 32.2. Sometimes morphisms Z — X [1] are denoted by arrows
Z+— X.

Then the elements of A can be depicted as actual triangles

N/

Z

X Y
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In particular the octahedron in Axiom (T4) becomes visible in this notation:

h

!

BN

Y .

1
!
1
1
!
\,
ZI

Here all the oriented triangles lie in A, and all the non-oriented triangles and
squares commute.

Remark 32.3. (T3), by use of (T2), can be seen as a kind of “2 out of 3”-

property: Given any two morphisms connecting two triangles, one may find a
third.

Theorem 32.4 (Long exact Hom-sequence). Let .7 be a triangulated category,
X—Y—Z—X[1]in A, and T € Q6 . Then the sequences
-+-—> Homg (T, X[n]) — Hom (T, Y [n]) — Hom (T, Z[n]) —

Homg (T, X[n+1]) — Homgo (T,Y[n + 1]) — Hom (T, Z[n + 1]) — - --
and
-+.— Homg (Z[n],T) — Homg&(Y[n],T) — Homg (X[n],T) —

Homg (Z[n —1],T) — Homg&(Y[n —1],T7) — Homgz (X[n —1,T) — ---
are exact.

Proof. We prove the first claim, the second one is dual. (Note that Z°P is also
triangulated.)
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By the rotation axiom (T2) it suffices to check that the sequence
Hom 4 (T, X) —> Hom o (T,Y) — Homg (T, Z)

is exact. We do so by comparing the given triangle to the trivial triangle
T—T—0—TI[1].

T T 0 T[1]
9 f i g1
X y 7 X11]

By (T3) the existence of the dashed arrow g is equivalent to the existence of the
middle dashed arrow. That is, for f € Hom#(T,Y) we have

[Y—Z]of=0 < JgcHomgs(T,X): [ X —Y]og=1f. O

Remark 32.5. The above theorem says that any morphism in a triangle is a
weak kernel of the next morphism, and a weak cokernel of the previous mor-
phism.

Theorem 32.6 (2 out of 3 property for isomorphisms). Let 7 be a triangulated
category, and consider two triangles connected by morphisms as in the following
diagram.

X1 Yl Zl Xl[l]
b
.X2 Y2 ZQ X2[1]

If two of the morphisms f, g, and h are isomorphisms, then so is the third one.

Proof. By (T2) we may rotate the triangles and assume f and g are isomor-
phisms. Now we apply the functor Hom #(—, Z1) to the entire diagram, obtain-
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ing

(X1, 21) <— N1, 21) ~—— (%1, Z1) <— (Xa[l], Z1) <—— (1 [1], Z1)

o Jree Jeen e Jeea

(X2, Z1) «— (Yo, Z1) <~ (22, Z1) < (X2[1], Z1) ~— (Y2[1], Z1)

where (—, Z7) is short for Hom o (—, Z1).

Since f and g are isomorphisms it follows that also the left two and right
two vertical maps in this diagram are isomorphisms. Now, by the five lemma,
the morphism

—oh: Homg(Zs, Z1) —> Homo (21, Z1)

is an isomorphism. In particular there is he Hom & (Z5, Z1) such that hoh=
idgz,, that is h is split mono.

Similarly, using the functor Hom & (Z5, —), one sees that h is split epi. Thus
h is an isomorphism. O

33 Homotopy categories are triangulated

Theorem 33.1. Assume & is an additive category. Then the homotopy cat-
egory K () is triangulated, with A being the class of all diagrams isomorphic
to standard triangles A® s B* — Cone(f*)— A°*[1].

Proof. We have seen (the first half of) (T2) in Proposition
The first and last point of (T1) hold by construction, for the second one note

id
that 0— X* — X*—0isa triangle, so, since we already checked (T2), so is
idx
X — X*—0—X"[1].
For (T3) we may, up to isomorphism, assume the following setup:

PO AR ) Cone(f*) @y X*[1]
Iu' v°® i 37 u®[1]
/e 1 Y
oI Ly k) Cone(f'®) OV x (1]
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where the left square commutes up to homotopy. Explicitly that means that
there are maps h': X*—> (Y’)"~! such that

’Uiofi—(f/)io’u/i:dg;,lohi—f—hi—"_lodg(.

o™ hn+1

0 u"+1> is a morphism of com-

One easily sees that the map given by w™ = (
plexes and fits into this diagram.

To check the octahedral axiom (T4), we again may assume that all triangles
are standard triangles, that is consider the commutative diagram

X* f. Y* k) Cone(f*) 0 X*[1]
v (52),
oY of pa (6) Cone(® o f*) (01) xe[]
10
1 1 01
O (1
Cone(g®) ~ Cone((g0 (1))”)
(01) (006%)
1
vor] — L Cone(soy

The map marked % in the diagram above is an isomorphism in K(&), with
inverse given by

(é fn0+1 9 8)n : Cone((9, %), ) — Cone(g®).

It only remains to check that the square

L ) L] (0 1) L]
Cone(g® o f*) X*[1]
(%%)‘ (1 0 oo) [

N frtrio) 01
Cone(( 9, ?)n) ’ — ’ Cone(g*®) # °[1]
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commutes up to homotopy. In fact one easily checks that it even commutes in
C(). O

Observation 33.2. Any object A € b/ may be considered as a complex
«+-0—A—0— .-, with A in degree 0. This construction gives a fully faith-
ful embedding of & into C(«/) and into K(«7). (Note that no non-zero map
between complexes of this form can be null-homotopic.)

By abuse of notation, we identify the object X with the complex as above.

Lemma 33.3. Let X € &/, and A* € C(«/). Then we may consider the
complex

Hom (X, A®).
We have
2" Homy (X, A®) = Homg () (X, A%[n]) and
H" Hom (X, A®) = Homg () (X, A®[n]).
Dually

2" Hom(A*, X) = Homg () (A%, X[n]) and
H" Hom, (A®, X) = Homg o) (A®, X[n]).

Proof. We see that

Home (o) (X, A*[n]) = {¢ € Homy (X, A™) | dj o p = 0}
= Ker[Hom (X, A™) — Hom,, (X, A"*1)]
= Z" Hom (X, A®).

Moreover a morphism from X to A®[n] is null-homotopic if and only if if factors
through dzfl, that is lies in

B" Hom,y (X, A®) = Im[Hom (X, A" ') — Hom,, (X, A™)].
The claim on homology now follows by taking quotients. O

Recall that, provided an abelian category <7 has enough projectives, we have
the functor p: &/ — K (&) taking an object to its projective resolution. Recall
also that, by the horseshoe lemma (Proposition [23.8]), for a short exact sequence

0—A—B—C—0 in o/
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we have a triangle
pA—>pB—>pC —>pA[l] in K(«).
Theorem 33.4. Assume </ has enough projectives. Then
Ext}, (A, B) = Homg ) (pA, B[n]).
Dually, if o/ has enough injectives, then
Ext’ (A, B) = Homg()(A, i Bln]).

Proof. We have Ext, (A, B) = H"” Hom, (pA, B) by definition. Now the claim
follows from Lemma [33.3] above. O

Remark 33.5. In view of this theorem, the long exact Hom-Ext-sequence can
be seen as a long exact sequence coming from a triangle in the homotopy cate-

gory.

We proceed by extending the above to arbitrary derived functors. To do so,
we need the following two observations:

Observation 33.6. Let o7 be an abelian category. Taking homology H° takes
triangles in K() to long exact sequences. (This is just a restatement of the
long exact sequence of homology — see Theorem M)

Observation 33.7. Let F: &/ — % be any additive functor. Then Fk preserves
triangles.

Construction 33.8. Let F: & — % be right exact. Then the long exact se-

quence of derived functors (associated to a short exact sequence A>—>B—>>C
in &) is the long exact sequence of homology coming from the triangle

FkpA —> FkpB —>FxpC —> FkpA[l] in K(%).

34 Derived categories

Derived categories address the following two (closely related) issues with homo-
topy categories:
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e Short exact sequences are not triangles in the homotopy category. (How-
ever one may get triangles replacing the objects by projective or injective
resolutions.)

e Quasi-isomorphisms preserve all information on homology, but are not iso-
morphisms in the category K(«7). In particular, in the discussion above,
we had to take a projective or injective resolution, instead of the object
itself (which is quasi-isomorphic).

The answer to these issues it to (brute force) make quasi-isomorphisms in-
vertible.

Construction 34.1. Let &/ be an abelian category. A roof from a complex
X*® to Y* is a diagram of the form

Xy
qis q/ \
X°* Y*

with some middle object X, and where ¢ is a quasi-isomorphism. For compact

notation we write the above roof as f - ¢~ !.

Two roofs f-¢~! and ¢g-r~! are called equivalent if there is a commutative
diagram

X.

qis ¢ ! S
qis

X* H* Y

. qis

qis r ]

X

Remark 34.2. In other words, if we denote the middle quasi-isomorphisms by
¢’ and 7’ respectively, we find a common denominator g o ¢’ = r o r’, and then
compare the enumerators f oq’ and gor’.

We need to check that the above notion of equivalence defines an equivalence
relation. To that end (and in fact throughout the discussion of roofs) we need
the following observation.
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Lemma 34.3 (Ore condition). Let &/ be an abelian category. Given the solid
part of the following square, where q is a quasi-isomorphism, it is possible to
find the dashed part (including Y* ), where r is a quasi isomorphism.

X Y

qis q ' oqis
g v
X®------>- >Ye*

Dually, given the dashed part, it is possible to find the solid part.

Proof. We complete ¢ to a triangle as in the upper row of the following diagram

5o ¢ X* Cone(q) X*[1]
f i g {idCone(q) Jf[l]
Ye® ,,,,r,,,> ?t. ——————— > Cone(q) Y.[]‘]

Now by (T1) and (T3) we can complete the diagram as indicated by the dashed
arrows, such that the lower row is also a triangle. Since ¢ is quasi-iso we know
that Cone(q) is exact. Now, since the cone of r is (isomorphic to) Cone(g), it
follows that also r is a quasi-isomorphism. O

Lemma 34.4. The above defines an equivalence relation on the collection of
roofs from X*® to Y*.

Proof. The definition of equivalence is clearly reflexive and symmetric.

1

Assume f-q¢~ ! is equivalent to ¢ -r~!, which in turn is equivalent to h-s7!,
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as in the solid part of the following diagram.

qis ¢

X.

qis s

By the Ore condition (Lemma D is is possible to find H*® and the two dashed
quasi-isomorphisms such that the square in the middle commutes. (One easily
sees that if three sides of a square are quasi-iso, then so is the forth.)

Now the claim follows by considering H* between the two outer roofs. [

Construction 34.5. Let &/ be an abelian category. Assume that for any
complexes X*® and Y'*, the collection of roofs from X*® to Y* up to equivalence
is a set. Then we define the derived category by

ObD() = BK(A) and
Homp ) (X*,Y*) = {roofs from X* to Y*}/ ~,

with composition given as follows:

Given f-¢~': X*—Y* and g-r~': Y*— Z°* as in the solid part of the
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following diagram,

X
. ~ 7 \\
qis 7/ S

/ ~
» ~

X ye
qis% \f« qis/ X
X Y* zZ*

we may find X* and the two dashed maps by the Ore condition (Lemma l
. We now define the product to be

(g-r=Ho(f-a=)=(af)- (a")"

One may check that this is well-defined up to equivalence of roofs, and only
depends on the equivalence class of the factors. Then it is easy to see that this
multiplication is associative.

Observation 34.6.

e The derived category comes with a natural functor K(&) — D(«) which
is sends every complex to itself, and a morphism f to the trivial roof

f-id™t
e A complex X* becomes isomorphic to 0 in D() if and only if it is exact.

e A morphism f in K() is mapped to the zero-morphism in D(&) if there
is a quasi-isomorphism ¢ such that f o g = 0. One can prove that this is
equivalent to f factoring through an exact complex. (To see this, consider
the cone of ¢.)

e For a quasi-isomorphism ¢, also the shift g[n] is a quasi-isomorphism for
any n. It follows that [1] defines an autoequivalence of D().

Theorem 34.7. Let o/ be an abelian category, such that D(<7) is defined. Then
D(4) is a triangulated category, where A consists of all triangles isomorphic
to standard triangles

X'LY'H Cone(f) — X*[1],

where [ is a morphism of complexes.



114 CHAPTER VI. TRIANGULATED CATEGORIES

Proof. We check the axioms. Here we make heavy use of the fact that we already
checked the axioms for K(&).

(T1) For the first bullet point (there is a triangle starting with any morphism)
we proceed as follows: Given the morphism f - ¢! we first find a standard
triangle starting with f, and then alter it by the isomorphism gq.

The second bullet point (triangle with identity as first morphism) follows
from the same statement for K(<7).

The third one (A closed under isos) holds by definition.

(T2) Up to isomorphism, the triangle is a standard triangle. For such trian-
gles we know that the rotations are isomorphic to standard triangles in K(.7),
and therefore also in D (7).

(T3) Up to isomorphism we may assume that the two triangles we want to
connect are standard triangles. That is we have the solid part of the following
diagram.

e B* Cone(a) A*(1]
qis q/ _.v4 qis ¢[1],/
A qis r 5. A[l]
qis G/ N o ais 4[1] 7
i--- Y, B ~ Cone(a) > /:i[l]
) N . s
e a D* Cione(c) C*[1]

By the Ore condition (Lemma we can find the two dashed maps as in the
diagram above, such that the upper pentagon commutes. We may even choose
them in such a way that also the lower pentagon commutes.

We complete a to a triangle, and apply (T3) for the homotopy category to
find the morphisms s and h making the diagram commutative. Taking homology
and applying the five lemma (Theorem , we can see that r and g o ¢ being
quasi-isomorphisms automatically also makes s a quasi-isomorphism. Thus the
morphism £ - s7! in D(«) is the desired morphism between cones.

(T4) For the octahedral axiom, one may argue (similarly to the above) that
all the input data lies in the homotopy category, and thus (T4) follows from the
same axiom for K (7). O

Remark 34.8. It might seem like we gained little, since the triangles in the
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derived category are “the same” as the triangles in the homotopy category.
However, since there are now more isomorphisms (all quasi-isos have become
isomorphisms), there are in fact “more” triangles.

f g
Example 34.9. Let 0—> A— B—(C —0 be a short exact sequence in an
abelian category. Then there is a triangle

aLe g2 e Ap] i D).

To see this, consider the standard triangle

fo @) (01)

A— B — Cone(f) —

We note that Cone(f) is the complex in the upper row of the following diagram,
and that the vertical map here is a quasi-isomorphism

T

Thus we also have the (isomorphic) triangle

o1l |
4t g 12l o g All]

in D(«7). Finally note that go (§) = g.
Theorem 34.10. Let o/ be abelian, and A, B € Ob «f. Then
0 if n <0,
Homp () (A, B[n]) = { Homy (A, B)  if n =0,
YExt',(A4,B) ifn=1.
Proof. We consider roofs
BTy
as g/ N
A Bln]
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where ¢ is a quasi-isomorphism.
We first consider the truncation of E® to the right as in the following dia-
gram.

F<0pe . .. B! Ker d%, 0
E*: s E*l EO El

One may observe that the natural map r: 7S°E® — E*® indicated above induces
an isomorphism on all non-positive homologies. Since in our setup E*® is quasi-
isomorphic to A it has non-zero homology only in degree 0. Therefore r is a
quasi-isomorphism.

It follows that the roof f - ¢! is equivalent to the roof fr-(¢r)~!. In other
words, up to equivalence we may assume that E*® is concentrated in non-positive
degrees.

This proves the first claim, since B[n] is concentrated in (the in that case
positive) degree —n.

Now assume n > 0. Then we may (similarly to the above) cut off the left
part of E*® as indicated in the following diagram.

E* - E—n—l E—"n E—n+1 - > ..
FZonpe . 0 Cokdffjnf1 —— Ftl —— -

As before we see that the map s: E®*—> 72" "E* is a quasi-isomorphism (since
n > 0).

Now observe that both ¢ and f factor through s (since both A and Bn]
are concentrated in degrees > —n), say via ¢’ and f’. Then we see that the
roof f-q~! is equivalent to f’ - (¢’)~!. Thus now we may assume that E® is
concentrated in degrees —n, ..., 0.

Now we consider the case n = 0. Then, by the above discussion, we may
assume that E* is concentrated in degree 0. Thus ¢ is an isomorphism, and hence
f-q7! lies in the image of the natural map Hom (A4, B) — Homp g (4, B).
Conversely this map is also injective, since no non-zero morphism from A to B
has vanishing homology. O
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Proposition 34.11. Let o/ be an abelian category, and P® a right bounded
complex of projectives. (That is all P™ are projective, and ANYn > N: P" =0.)
Then

(1) Let E* be an exact complex. Then Homg ) (P*, E®) = 0.

(2) Any quasi-isomorphism P*—>P* from any complex P* to P* is a split
epimorphism in the category K (7).

(8) Let X*® be any complex. Then the map
HOIHK(Q{)(P.,X.) - HOHID(M)(P.,X.)
18 an isomorphism.

Proof. (1) Let f*: P*— E* be a morphism of complexes. We construct a null-
homotopy iteratedly from right to left. So let n be some index, and assume we
already have h': P'— E*~! for i > n, such that f’ = dlgl oh®+ hi*ldi,. (Note
that this is automatic for n > N - thus we have a starting point for our iterated
construction.)

The setup is depicted in the following diagram.

dn
v pnr 4P, Pn+1
» // n /
h // h"+1 fn+1
o ’ dn—l /’ e
Enfl E - 4 En dn En+1
/ E
\ ¥ /
-1
Imdy,

We observe that di o (f* — h"*! o d%) = 0, and hence f™ — h"*! o d} factors
through Im d%fl = Ker d, as indicated by the dashed arrow above. Since P" is

projective we may lift along the epimorphism E™~!—> Im d’é_l, obtaining h"
as indicated by the dotted arrow.

(2) Let g: P*—P*bea quasi-isomorphism. Then, in the triangle

q -
P* —> P* —> Cone(q) —> P°*[1]
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in K(&7), the complex Cone(q) is exact (Corollary , so by (1) the middle
map vanishes.
It now follows that ¢ is a split epimorphism.

(3) By (2) in any fraction f-g~': P*—> X*® the quasi-isomorphism ¢ is a
split epimorphism. Thus we may find ¢ such that gog = idpe. One easily checks
that f-¢~' = (fg)-id ™', so it lies in the image of the functor K (&) — D(<).

On the other hand, we know that a morphism f in K() vanishes in D(/) if
and only if there is a quasi-isomorphism ¢ such that fog = 0 (Observation
However, by (2) such a quasi-isomorphism is a split epimorphism, hence f =
0. O

Corollary 34.12. Assume &/ has enough projectives or enough injectives.
Then
Homp ) (A, B[n]) = Ext}, (A, B)

for any n and objects A and B of <7 .

Proof. Assume o7 has enough projectives, and let pA be a projective resolution
of A. Then the natural projection ¢: pA— A is a quasi-isomorphism, and so

HOHID(W) (A, B[n]) = HOI’HD(:Q{) (pA, B[n])

= Homg () (pA, B[n]) (by Proposition [34.11])
= Ext?, (4, B) (by Theorem [33.4)

O

Remark 34.13. e By Example [34.9] a short exact sequence in &/ “is” a
triangle in D(7). Thus, by Corollary above, the long exact Hom-
Ext sequence can be interpreted as the long exact Hom-sequence coming
from this triangle.

e Corollary and Theorem [34.10| also show that all definitions of Ext
coincide, when they are defined (Yoneda-Ext, deriving by first argument,
and deriving by second argument).

35 Derived functors

Let F: & — % be an additive functor. We observed that applying this functor
position by position gives rise to a functor Fx : K(«) —K(Z#). We would now
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like to do the same thing for derived categories, that is we would like to have a
functor Fp making the following square commutative

K(o) — 5 K(%)
T of J {TF@
D(/) —2 . D(®)

where 7, and mg are the canonical functors from the homotopy categories to
the corresponding derived categories.
Unfortunately, however, it is not possible to find such a functor Fp in general:

Lemma 35.1. LetF: of — A be an additive functor between abelian categories.

Then a functor Fp: D(&/) — D(%) making the diagram above commutative
exists if and only if F is exact.

Proof. If the functor F is exact, then it preserves homology, and thus in particu-
lar Fk preserves quasi-isomorphisms. It follows that we can define Fp(f-q~!) =
Fx(f)-Fx(q)~!. (Note that Fk preserves equivalence of roofs, so this is in fact
well-defined.)

On the other hand, if F is not an exact functor, then there will be a short
exact sequence A; > As; —>> A3z in o such that the image

OHFAli’FAQ*’FAgi’O

is not exact. Interpreting this sequence as an element of K (&), we see that the
object is sent to 0 by 74, but not by w4 o Fk. Clearly this makes it impossible
to obtain a commutative square as above. O

Since it usually is not possible to find a functor Fp as above, one is lead to
consider functors that make the square “as commutative as possible”.

Definition 35.2. Let F: o — 2% be an additive functor between abelian cat-
egories. A (total) left derived functor of F is a functor LF: D(&) — D(%),

together with a natural transformation ¢: LF 0w, — mg o Fk, which is univer-
sal in the following sense:
For any other functor G: D(«?) —D(%), together with a natural transfor-

mation ¢ : Gom —> w40FK, there is a unique natural transformation (: G— LF
such that ¥ = ¢ o (.
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Dually, a (total) right derived functor of F is a functor RF: D(&/) — D(%),

together with a natural transformation ¢: 74 oFg — RF o7, satisfying a dual
universal property.

Remark 35.3. In general, there is no reason for a total left or right derived
functor to exist.

However, if one does exist, then the universal property guarantees that it is
unique (up to unique natural isomorphism). Therefore we can talk about the
left derived functor or the right derived functor in this case.

It is a bit technical to construct total derived functors between the entire de-
rived categories in general (and requires additional assumptions on 7). To sim-
plify our situation here a bit we consider the full subcategory of right bounded
complexes

C ()={A*|INVn> N A" =0} C C(&),
and its counterparts K~ (&) C K(&) and D™ (&) C D(&). Similarly we
may consider the category of left bounded complexes C* (&), the homotopy

category of left bounded complexes KT (), and the derived category of left
bounded complexes DT (7).

Proposition 35.4. Assume o/ has enough projectives. For any right bounded
complex A® there is a right bounded complex p(A®) of projectives and a quasi-

isomorphism p(A®) — A®.
This construction gives a functor

p: D7 (&) — K" (&)
which is left adjoint to projection m: K~ (&) — D~ (&). Moreover, the unit of
the adjunction €: idp- (o) —> 7P s a natural isomorphism.

Proof. We construct p(A®) iteratedly from right to left. Assume all A® with i >
n are already projective. Pick an epimorphism P"— A" with P" projective,

and consider the following diagram
An—2 An—1 [[4n P* —— P?" —— Antl —— -

T

An72 Anfl A" An+1 P
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where the map P" — A" ! is composition, and the map A" =2 — A"~ ] ,, P"
is obtained from the pullback property. Since the pullback is taken along an
epimorphism the middle square is in fact exact, and thus this morphism of
complexes is a quasi-isomorphism.

Tterating this construction one obtains the desired quasi-isomorphism

Nas: p(A®) —> A°.

Now we can first turn p into a functor D~ (&) — D~ (&) by setting p(f) =
ng' o fona for any morphism f: A* — B*. Since by Proposition @ 3) the
morphism sets in the derived and homotopy category coincide on right bounded
complexes of projectives, p defines a functor D~ (&) — K™ (7).

The fact that p is left adjoint to 7 follows from

. ° 3) o [ d o
HomK*(‘Q{)(pA , B ) = HomD*(‘Q{)(pA , B )gHomD*(d)(A , B )7

where the second isomorphism is due to the fact that the quasi-isomorphism
N4e becomes an isomorphism in the derived category.

Finally we note that the unit is given by €4e = (74¢)~! — which is defined
on the derived level. O

Now we can prove that total right derived functors can be understood using
projective resolutions at least in the setup of right bounded complexes.

Theorem 35.5. Let F: o7 — % be an additive functor between abelian cate-
gories.

o Assume that o/ has enough projectives. Then on the subcategories of right
bounded complexes there is a total left derived functor

LF: D (&)—D (%)
giwven by LF = mz o Fk o p.

e Dually, if &/ has enough injectives, then there is a total right derived
functor

RF: D* (/) —> D* (%)

with respect to left bounded complexes, given by RF = tg oFk o1i.
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Proof. We only prove the first claim, the second one is dual.
First note that in the diagram

K- (o) — X K~ ()
W@{J {ﬂ'gg
D () —F . D (2)

we do have a natural transformation ¢: LF o m s — w4 o Fg. Recalling that
p is left adjoint to m. (see Proposition above) we have the counit n: p o

Ty = idg- (o). We now choose

¢ = (mgoFK)(n): mgoFKopomy —> Ty oFK.
—_——
=LF

property of Definition Let G: D™ (&) — D~ (&) be a different functor,

together with a natural transformation ¢: Gomy —7mg oFk. If (: G—LF is
a natural transformation such that ¢ = ¢ o ¢, then

"/}p = ¢p © Cfr,dop

Since the unit €: idp-(4) —> 7 o p is a natural isomorphism, and since

It only remains to verify that our choice of LF and ¢ satisfy the universal
i

¢p = (1 0 F)(1p) = (mp 0 Fx o p)(e )
we obtain
¢ =LF(€)™" 0 Croyop 0 Gle) = ¥p 0 Gle).
In particular ¢ as uniquely determined.
Conversely, with the choice { = 1, 0 G(€), we obtain

¢0Cr, = (77@ o FK)(n) © wpm;f © G(eﬂ,q;/)
=1 o (Gomy)(n) o Gler,,)
=10 G(mey(n)oer,,)
=ldp— (a)

= 1.

Thus our choice of LF and ¢ does satisfy the universal property, so it is the total
left derived functor of F. O
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Remark 35.6. e Theorem shows, in particular, that the appearance
of projective and injective resolutions in the definition of left and right
derived functors is not an arbitrary choice / coincidence. On the con-
trary, the definition of derived functors via a universal property forces
this construction.

e In many cases an obvious analog of Theorem [35.5|also holds for unbounded
complexes. However, for such a result one typically needs that <7 has
certain colimits (essentially along the poset Z), and that these colimits
are exact.

36 Exercises

Exercise VI.1. Let .7 be a triangulated category, and X —Y — Z — X[1]

a distinguished triangle. Assume the map Z— X[1] is 0. Show that the (rest
of the) triangle then is a split short exact sequence.

Exercise VI.2. Let .7 be a triangulated category. Assume that 7 is in addi-
tion abelian. Show that .7 is semisimple.

Exercise VI.3. Let & be an abelian category. Show that any complex is
isomorphic to its homology in K(&) if and only if &7 is semisimple.

(Here the homology of a complex X* is considered as the complex

. &H—l(XO)iHO(X-)&Hl(X')H .

f
Exercise VI.4. Let .7 be a triangulated category, and C— F — B— ('[1]

g
and B— E— A—> BJ[1] two distinguished triangles. Assume the composition

f[1] o g: A—> C[2] vanishes. Show that there is an object X and morphisms
as indicated by the dashed arrows below, such that the diagram commutes and
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the new row and new column are distinguished triangles too.

c F B C1]
o N G — Sy R -~y
i
A A
Flu Bl

(Compare to Exercise [V.10])

Exercise VI.5. Let o/ be abelian. Let A® be a complex concentrated in nega-
tive degrees (A™ = 0 Vn > 0), and B® be a complex concentrated in non-negative
degrees (B™ = 0VYn < 0).

Show that Homp () (A®, B*) = 0.

Exercise VI.6. Let 7 be a triangulated category, and % be a triangulated
subcategory. (That is a full subcategory closed under [1] and [—1], and such
that the cone of any morphism in the subcategory is in % again.)
Let . be the collection of all morphisms in 7, whose cone lies in % .
Show that (up to set theoretical issues) one can define a triangulated category
717 making all morphisms in .7 invertible in the same way as we defined
the derived category in the lectures.
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Snake lemma,
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