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Abstract. We study the notion of positive and negative complexity of pairs

of objects in cluster categories. The first main result shows that the maximal

complexity occurring is either one, two or infinite, depending on the repre-
sentation type of the underlying hereditary algebra. In the second result, we

study the bounded derived category of a cluster tilted algebra, and show that
the maximal complexity occurring is either zero or one whenever the algebra

is of finite or tame type.

1. Introduction

Cluster categories associated to finite dimensional hereditary algebras were in-
troduced in [BMRRT]. These 2-Calabi-Yau triangulated categories arise as orbit
categories of derived categories, and provide a categorification of the combinatorics
of the cluster algebras introduced in [FoZ] by Fomin and Zelevinsky in the acyclic
case. They also provide a generalized framework for classical tilting theory, with
the cluster tilting objects and their endomorphism rings, the cluster tilted algebras.

Given two objects in a triangulated category defined over a field, their total
cohomology is a Z-graded vector space over the ground field. It therefore makes
sense to study the rate of growth of the dimensions in both the “negative” and the
“positive” direction, thus leading to the notion of negative and positive complexity
of a pair of objects. In this paper, we study the complexity of pairs of objects in a
cluster category, and show that the maximal complexity occurring depends on the
representation type of the hereditary algebra we start with:

Theorem. Let H be a basic finite dimensional hereditary algebra over an alge-
braically closed field, and let CH be the corresponding cluster category. Then

sup{cx∗CH (X,Y ) | X,Y ∈ CH} =

 1 if H has finite type,
2 if H has tame type,
∞ if H has wild type.

We also study the complexity of the derived category of a cluster tilted algebra,
and show that in this case, the maximal complexity occurring depends on the
representation type of the algebra:

Theorem. If Λ is a cluster tilted algebra of finite or tame representation type, then

sup{cx∗Db(Λ)(X,Y ) | X,Y ∈ Db(Λ)} =

{
0 if Λ is hereditary,
1 otherwise

We prove this by showing that a tame cluster tilted algebra has finitely many
indecomposable Cohen-Macaulay modules. Finally, we look at some examples show-
ing what can happen for wild cluster tilted algebras.
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2. Preliminaries

Throughout this section, we fix a field k and a triangulated Hom-finite k-category
T with suspension functor Σ. Thus for all objects X,Y, Z in T , the set HomT (X,Y )
is a finite dimensional k-vector space, and the composition

HomT (Y,Z)×HomT (X,Y )→ HomT (X,Z)

is k-bilinear. Recall that a Serre functor on T is a triangle equivalence T S−→ T ,
together with functorial isomorphisms

HomT (X,Y ) ' DHomT (Y, SX)

of vector spaces for all objects X,Y ∈ T , where D = Homk(−, k). By [BoK], such
a functor is unique if it exists. For an integer d ∈ Z, the category T is said to be
d-Calabi-Yau if it admits a Serre functor which is isomorphic as a triangle functor
to Σd.

A subcategory of T is thick if it is a full triangulated subcategory closed under
direct summands. Now let C and D be subcategories of T . We denote by thick1

T (C)
the full subcategory of T consisting of all the direct summands of finite direct sums
of shifts of objects in C. Furthermore, we denote by C ∗D the full subcategory of
T consisting of objects M such that there exists a distinguished triangle

C →M → D → ΣC

in T , with C ∈ C and D ∈ D. Now for each n ≥ 2, define inductively thickn
T (C)

to be thick1
T
(
thickn−1

T (C) ∗ thick1
T (C)

)
, and denote

⋃∞
n=1 thickn

T (C) by thickT (C).
This is the smallest thick subcategory of T containing C.

Given two objects X and Y of T , we define the positive complexity of the ordered
pair (X,Y ) as

cx+
T (X,Y )

def
= inf{t ∈ N ∪ {0} | ∃a ∈ R : dim HomT (X,Σn Y ) ≤ ant−1 for n� 0}.

Similarly, we define the negative complexity as

cx−T (X,Y )
def
= inf{t ∈ N∪{0} | ∃a ∈ R : dim HomT (X,Σ−n Y ) ≤ ant−1 for n� 0}.

Whenever we write cx∗T (X,Y ) and make a statement, it is to be understood that the
statement holds for both the positive and the negative complexity. By definition,
the positive complexity is zero if and only if HomT (X,Σn Y ) = 0 for large n,
whereas the negative complexity is zero if and only if HomT (X,Σn Y ) = 0 for
small n. Moreover, given integers a, b ∈ Z, there is an equality cx∗T (X,Y ) =

cx∗T (ΣaX,Σb Y ). Note also that if T is d-Calabi-Yau for some d, then cx+
T (X,Y ) =

cx−T (Y,X); in particular the equality cx+
T (X,X) = cx−T (X,X) holds in this case.

The following elementary lemma shows that complexity in some sense behaves
nicely on thick subcategories.

Lemma 2.1. Let X and Y be objects of T . Then cx∗T (X ′, Y ) ≤ cx∗T (X,Y ) for
all objects X ′ ∈ thickT (X), and cx∗T (X,Y ′) ≤ cx∗T (X,Y ) for all objects Y ′ ∈
thickT (Y ). In particular, the inequality cx∗T (X ′, X ′′) ≤ cx∗T (X,X) holds for all
objects X ′, X ′′ ∈ thickT (X).

Proof. We prove only the first inequality, by induction on the number n such that
X ′ belongs to thickn

T (X). If cx∗T (X,Y ) = ∞, then the inequality obviously holds.
Hence we may assume that cx∗T (X,Y ) is finite, say cx∗T (X,Y ) = c. If n = 1, then X ′

is a direct summand of finite direct sums of shifts of X, hence the inequality holds
in this case. Next, suppose n > 1 and that X ′ belongs to thickn−1

T (X) ∗ thick1
T (X).

Then there exists a triangle

X1 → X ′ → X2 → ΣX1
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in which X1 ∈ thickn−1
T (X) and X2 ∈ thick1

T (X). This triangle induces an exact
sequence

HomT (X2,Σ
n Y )→ HomT (X ′,Σn Y )→ HomT (X1,Σ

n Y )

of vector spaces for every n ∈ Z. By induction, both cx∗T (X1, Y ) and cx∗T (X2, Y )
are at most c. Therefore, there exist real numbers a1 and a2 such that

dim HomT (X1,Σ
n Y ) ≤ a1|n|c−1

dim HomT (X2,Σ
n Y ) ≤ a2|n|c−1

for |n| � 0. This gives

dim HomT (X ′,Σn Y ) ≤ dim HomT (X1,Σ
n Y ) + dim HomT (X2,Σ

n Y )

≤ (a1 + a2)|n|c−1

for |n| � 0, showing that cx∗T (X ′, Y ) is at most c. The result now follows from the
definition of thickn

T (X). �

The aim of this paper is to determine the maximal complexity occurring in
certain triangulated categories, via maximal orthogonal subcategories. Recall that
a subcategory C of T is contravariantly finite in T if every object in T admits
a right C-approximation. Thus, for every object X ∈ T there exists a morphism
C → X with C ∈ C, such that every morphism C ′ → X with C ′ ∈ C factors through
C. The following lemma provides a criterion under which a contravariantly finite
subcategory C generates T (see [Iya] and [KeR, Section 5.5]). Consequently, we see
from Lemma 2.1 that the maximal complexity of T equals that of C.

Lemma 2.2. Let C be a contravariantly finite subcategory of T , and suppose there
exists an integer n ≥ 1 such that the following are equivalent for every object X ∈ T :

(1) X ∈ C,
(2) HomT (C,ΣiX) = 0 for 1 ≤ i ≤ n and all C ∈ C.

Then thickn+1
T (C) = T .

Proof. Choose n triangles

K1
// C0

f0 // X // ΣK1

...
...

...
...

Kn−1
// Cn−2

fn−2 // Kn−2
// ΣKn−1

Kn
// Cn−1

fn−1 // Kn−1
// ΣKn

in which the morphisms fi are right C-approximations. Let C be any object in C.
The triangles induce exact sequences

· · · → HomT (C,Σj Ci)
(Σj fi)∗−−−−−→ HomT (C,Σj Ki)→ HomT (C,Σj+1Ki+1)→ · · ·

for 0 ≤ i ≤ n−1 (where we have denoted X by K0). An induction argument shows
that HomT (C,ΣiKn) vanishes for 1 ≤ i ≤ n, hence Kn belongs to C. Then another
induction argument shows that X belongs to thickn+1

T (C). �

Corollary 2.3. Given the assumptions from the previous lemma, the equality

sup{cx∗T (X,Y ) | X,Y ∈ T } = sup{cx∗T (C,C ′) | C,C ′ ∈ C}

holds.
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In the next section, we apply the above results to Calabi-Yau triangulated cat-
egories admitting subcategories with the properties displayed in the assumption of
Lemma 2.2. Recall therefore that, if T is d-Calabi-Yau for some d ≥ 2, then a
cluster tilting subcategory of T is a contravariantly finite subcategory C such that
the following are equivalent for any object X ∈ T :

(1) X ∈ C,
(2) HomT (C,ΣiX) = 0 for 1 ≤ i ≤ d− 1 and all C ∈ C.

Since T is d-Calabi-Yau, property (2) is equivalent to

(3) HomT (X,Σi C) = 0 for 1 ≤ i ≤ d− 1 and all C ∈ C.
An object T ∈ T is a cluster tilting object of T if addT is a cluster tilting subcat-
egory.

Note that it follows directly from Corollary 2.3 that if C1 and C2 are cluster
tilting subcategories of T , then

sup{cx∗T (X,Y ) | X,Y ∈ T } = sup{cx∗T (C1, C
′
1) | C1, C

′
1 ∈ C1}

= sup{cx∗T (C2, C
′
2) | C2, C

′
2 ∈ C2}.

Therefore, in order to determine the maximal complexity of a Calabi-Yau triangu-
lated category, any cluster tilting subcategory will do.

3. Cluster categories

Cluster categories associated to finite dimensional hereditary algebras were in-
troduced in [BMRRT] (and for hereditary algebras of Dynkin type An in [CCS]).
Let k be an algebraically closed field and H a basic finite dimensional heredi-
tary k-algebra. Let Db(H) be the bounded derived category of finitely generated
left H-modules; this category is triangulated, its suspension functor Σ is just the
shift of a complex. Finally, denote by τ the Auslander-Reiten translate in Db(H);
this functor is induced by the usual Auslander-Reiten translate DTr on the non-
projective indecomposable H-modules. It was shown in [Kel] that the orbit category

Db(H)/τ−1 Σ is triangulated, with suspension functor induced by Σ. This is the

cluster category CH associated to H. Its objects coincide with the objects in Db(H),
and the functors Σ and τ are equal. Given objects X and Y of CH , the morphism
space HomCH (X,Y ) is given by

HomCH (X,Y )
def
=
⊕
i∈Z

HomDb(H)(τ
−i ΣiX,Y ),

which is finite dimensional since H is hereditary. We shall denote the suspension
functor of CH by Σ as well. Moreover, given an H-module M , we shall also denote
its image in CH by M . By [BMRRT, Proposition 1.7(b)] the cluster category CH
is 2-Calabi-Yau, that is, there is an isomorphism

DHomCH (X,ΣY ) ' HomCH (Y,ΣX)

of vector spaces for all objects X and Y in CH .
In order to prove the main result, we need a result on the rate of growth of

the sequence {dim τ−nH}∞n=1 for a hereditary algebra H. Recall first that the
representation type of a finite dimensional algebra (over an algebraically closed
field) is either finite, tame or wild. An algebra is of finite representation type if there
are only finitely many non-isomorphic indecomposable modules. Furthermore, an
algebra is of tame representation type if there exist infinitely many non-isomorphic
indecomposable modules, but they all belong to one-parameter families, and in
each dimension there are finitely many such families. Finally, an algebra is of
wild representation type if it is not of finite or tame type. In the latter case, the
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representation theory of the algebra is at least as complicated as the classification of
finite dimensional vector spaces together with two non-commuting endomorphisms.

Proposition 3.1. Let H be a finite dimensional hereditary algebra of infinite rep-
resentation type over an algebraically closed field. Define

γ
(
τ−1
H

)
:= inf{t ∈ N ∪ {0} | ∃a ∈ R : dim τ−nH ≤ ant−1 for n� 0}.

Then the following hold:

(1) γ
(
τ−1
H

)
= 2 if (and only if ) H is tame.

(2) γ
(
τ−1
H

)
=∞ if (and only if ) H is wild.

Proof. (1) Suppose H is tame. We may assume that H is the path algebra of

one of the Euclidean quivers Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. We prove this case by using the
theory of quadratic forms, and refer to [Ri1, Chapter 1] for unexplained notation
and terminology.

Let r ∈ Zn be a minimal positive radical vector. It is shown in [DlR] (see the
formulas in the middle of page 11 there, and note that the coxeter transformation
coincides with the induced action of τ on the Grothendieck groups) that there is a
natural number m such that for any indecomposable H-module X

∃∂ ∈ Z ∀n ∈ Z [τmnX] = [X] + n∂r,

provided τmnX 6= 0.
This shows that the sequence {dim τ−nH}∞n=1 grows linearly.
(2) Suppose H is wild, and let P be an indecomposable H-module. By [Tak,

Theorem 2.4], there exists an integer m such that

lim
n→∞

dim τ−nP

ρnnm−1

is nonzero, where ρ is the spectral radius of the Coxeter transformation of H. Now
suppose that γ

(
τ−1
H

)
is finite, so that there exist a t ≥ 0 and an a ∈ R such that

dim τ−nP ≤ ant−1 for large n. Then

lim
n→∞

dim τ−nP

ρnnm−1
≤ lim

n→∞

ant−1

ρnnm−1

= lim
n→∞

ant−m

ρn

= 0

since, by [Ri2, Theorem], the spectral radius ρ satisfies ρ > 1. This is a contradic-
tion, hence γ

(
τ−1
H

)
=∞. �

We now prove the main result. It shows that the maximal complexity in CH
(positive and negative) is either one, two or infinite, depending on the representation
type of H.

Theorem 3.2. Let H be a basic finite dimensional hereditary algebra over an
algebraically closed field, and let CH be the corresponding cluster category. Then

sup{cx∗CH (X,Y ) | X,Y ∈ CH} =

 1 if H has finite type,
2 if H has tame type,
∞ if H has wild type.

Proof. Consider the subcategory addH of CH . It is contravariantly finite since it
contains only finitely many non-isomorphic indecomposable objects. Moreover, by
[BMRRT, Theorem 3.3(b)], the following are equivalent for any object X ∈ CH :

(1) X ∈ addH,
(2) HomCH (H,ΣX) = 0.



6 PETTER ANDREAS BERGH & STEFFEN OPPERMANN

Thus the object H is cluster tilting in CH , and so from Corollary 2.3 we see that

sup{cx∗CH (X,Y ) | X,Y ∈ CH} = cx∗CH (H,H).

Since CH is Calabi-Yau, the maximal positive complexity equals the maximal neg-
ative complexity. It therefore suffices to prove the result for negative complexity.

By definition, the negative complexity cx−CH (H,H) equals the rate of growth of

the dimensions of the vector spaces HomCH (H,Σ−nH) as n grows. Since τ = Σ on
CH , we obtain isomorphisms

HomCH (H,Σ−nH) ' HomCH (H, τ−nH)

'
⊕
i∈Z

HomDb(H)(τ
−i ΣiH, τ−nH)

'
⊕
i∈Z

HomDb(H)(H, τ
i−n Σ−iH)

of vector spaces. If H is of finite representation type, then dim HomCH (H, τ−nH)
is bounded as n→∞. Hence the result follows in this case.

Suppose H is of infinite representation type. Given integers i and j, the stalk
complex τ i Σj H in Db(H) is nonzero in degree j − 1 when i ≥ 1, and in degree j
when i ≤ 0. Thus when n is positive, the only nonzero term in the above direct
sum appears when i = 0, that is, the term HomDb(H)(H, τ

−nH). Therefore, for
such n, we obtain the isomorphisms

HomCH (H,Σ−nH) ' HomDb(H)(H, τ
−nH)

' HomH(H, τ−nH)

' τ−nH.

Consequently, the negative complexity cx−CH (H,H) equals the rate of growth of the

sequence {dim τ−nH}∞n=1. The result now follows from Proposition 3.1. �

4. Cluster tilted algebras

Let H be a basic finite dimensional hereditary algebra over some algebraically
closed field, and T a cluster tilting object in the cluster category CH . The corre-
sponding cluster tilted algebra is the endomorphism ring EndCH (T ), itself a finite
dimensional algebra. By [BMR], the functor

Hom(T,−) : CH/(τT )→ mod (EndCH (T ))

is an equivalence, hence one might suspect from Theorem 3.2 that tame cluster
tilted algebras have complexity two. However, this is not the case: we show in this
section that their complexity is at most one.

In order to show this, we first recall some facts on Gorenstein algebras. Let Γ be
such an algebra, and denote by CM(Γ) the category of Cohen-Macaulay Γ-modules,
i.e.

CM(Γ) = {M ∈ mod Γ | ExtiΓ(M,Γ) = 0 for all i > 0}.
It follows from general cotilting theory that this is a Frobenius exact category, in
which the projective injective objects are the projective Γ-modules, and the injective
envelopes are the left add Γ-approximations. Therefore the stable category CM(Γ),
which is obtained by factoring out all morphisms which factor through projective
Γ-modules, is a triangulated category. Its shift functor is given by cokernels of left
add Γ-approximations, the inverse shift is the usual syzygy functor. Now let Db(Γ)
be the bounded derived category of finitely generated Γ-modules. Furthermore,
let Dperf(Γ) be the thick subcategory of Db(Γ) consisting of objects isomorphic
to bounded complexes of finitely generated projective Γ-modules. It follows from
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work by Buchweitz, Happel and Rickard (cf. [Buc], [Hap], [Ric]) that CM(Γ) and

the quotient category Db(Γ)/Dperf(Γ) are equivalent as triangulated categories.
The following lemma shows that if CM(Γ) is of finite type, i.e. contains only

finitely many non-isomorphic indecomposable objects, then the maximal complexity
occurring in Db(Γ) is either one or zero.

Lemma 4.1. Let Γ be a finite dimensional Gorenstein algebra such that the category
CM(Γ) of Cohen-Macaulay Γ-modules has finitely many non-isomorphic indecom-
posable objects. Then

sup{cx+
Db(Γ)

(X,Y ) | X,Y ∈ Db(Γ)} =

{
0 if Γ has finite global dimension,
1 otherwise

Proof. Let X and Y be complexes in Db(Γ). As mentioned above, the categories

CM(Γ) and Db(Γ)/Dperf(Γ) are equivalent, and so there is a dense functor Db(Γ)→
CM(Γ). If we denote by X and Y the images of X and Y in CM(Γ), then it follows
from [Buc, Corollary 6.3.4] that cx+

Db(Γ)
(X,Y ) = cx+

CM(Γ)(X,Y ). Since CM(Γ) is

of finite type, we see that cx+
CM(Γ)(X,Y ) is at most one. �

Recall from [KeR] that a cluster tilted algebra is Gorenstein of dimension one,
that is, its injective dimension as a left and right module over itself is one. The
following result shows that if such an algebra Λ is tame, then CM(Λ) is of finite
type.

Theorem 4.2. If Λ is a tame cluster tilted algebra, then the category CM(Λ)
of Cohen-Macaulay Λ-modules has finitely many non-isomorphic indecomposable
objects.

Proof. Ww may assume Λ to be connected. By definition, there is a connected
hereditary algebra H and a cluster tilting object T ∈ CH such that Λ = EndCH (T ).
Moreover, by a theorem of Krause (cf. [Kra, Corollary 3.4]), the algebra H is also
tame. Therefore, at least two of the indecomposable direct summands of T lie
in the non-regular component (this is the component of CH that comes from the
preprojective and preinjective components of modH). Let Ti be one such summand
lying “as far to the right as possible”, that is, there is no path in this component
from Ti to any other summands of T . We may assume that τ−Ti comes from a
projective H-module. Now for any X ∈ modH we have

X ∈ CM(Λ) ⇐⇒ Ext1
Λ(X,Λ) = 0

⇐⇒ HomΛ(τ−Λ, X) = 0

=⇒ HomCH (τ−Ti, X)/(maps factoring through τT ) = 0

⇐⇒ HomH(τ−Ti, X)/(maps factoring through τT ) = 0,

where the implication in the third line holds because of the following: there is an
isomorphism

HomΛ(τ−Λ, X) ' HomCH (τ−Λ, X)/(maps factoring through T or τT ),

since the functor

Hom(T,−) : CH/(τT )→ mod Λ

is an equivalence identifying addT with projective Λ-modules, and

HomCH (τ−Λ, X)/(maps factoring through T or τT )

= HomCH (τ−Λ, X)/(maps factoring through τT ),

since HomCH (τ−T, T ) = 0.



8 PETTER ANDREAS BERGH & STEFFEN OPPERMANN

For X preprojective, the space

HomH(τ−Ti, X)/(maps factoring through τT )

is just HomH(τ−Ti, X), and this vanishes only for finitely many X.
We denote by R the direct sum of the regular summands of T . For almost all

regular and almost all preinjective H-modules X we have

HomH(τ−Ti, X)/(maps factoring through τT )

= HomH(τ−Ti, X)/(maps factoring through τR).

If X lies in a homogeneous tube then the denominator vanishes, and hence the
space is non-zero.

For any indecomposable regular X the dimension dim Hom(τR,X) is at most
the number of indecomposable summands of R. For all preinjective X we have
dim Hom(τR,X) = dim Hom(τ1−`R,X) = dim Hom(τR, τ `X), for some ` only de-
pending on R, and hence there is also a common bound for all the dim Hom(τR,X)
with X preinjective. Thus for any indecomposable regular or preinjective X we have

dim HomH(τ−Ti, X)/(maps factoring through τR)

>dim HomH(τ−Ti, X)− dim HomH(τ−Ti, τR) · dim HomH(τR,X)︸ ︷︷ ︸
bounded

,

and hence the space

HomH(τ−Ti, X)/(maps factoring through τR)

can only vanish if dim HomH(τ−Ti, X) is sufficiently small. However, this only
happens for finitely many modules which are preinjective or lie in non-homogeneous
regular tubes. �

Combining Lemma 4.1 and Theorem 4.2, we see that cluster tilted algebras of
finite or tame type are of complexity at most one.

Theorem 4.3. If Λ is a cluster tilted algebra of finite or tame representation type,
then

sup{cx+
Db(Λ)

(X,Y ) | X,Y ∈ Db(Λ)} =

{
0 if Λ is hereditary,
1 otherwise

Proof. By [KeR, Proposition 2.1], the algebra Λ is Gorenstein of dimension one,
that is, its injective dimension as a left/right module over itself is one. In particular,
if Λ has finite global dimension, then it is hereditary. By Theorem 4.2, the are only
finitely many isomorphism classes of indecomposable Cohen-Macaulay Λ-modules,
hence the result follows from Lemma 4.1. �

Next, we look at three examples of wild cluster-tilted algebras. These examples
show that Theorem 4.3, and hence also Theorem 4.2, does not generalize to wild
cluster tilted algebras. For background on mutations of quivers with potentials, see
[BIRS] and [DWZ].

Examples. (1) Let Λ0 = k[ 1
// // 2 // 3 ] be the path algebra of the

wild quiver 1
//// 2 // 3 . This is a hereditary algebra, and therefore

cx∗Db(Λ0)
(X,Y ) = 0 for any X,Y ∈ Db(Λ0).

(2) Let Λ1 be the cluster tilted algebra obtained from Λ0 by mutation at the
vertex 2. Then Λ1 is the path algebra of the quiver

2

x2

ww

x1

��
1

z1 **
z2

44 3

y
^^>>>>>>>
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subject to the relations given by the cyclic derivatives of the potential
x1z1y+x2z2y, namely the relations {x1z1 +x2z2, yx1, yx2, z1y, z2y}. Then

sup{cx+
Db(Λ1)

(X,Y ) | X,Y ∈ Db(Λ1)} = 1.

(3) Let Λ2 be the cluster tilted algebra obtained from Λ1 by mutation at the
vertex 1. Then Λ2 is the path algebra of the quiver

2
y1

��
y3

''

y2

��>>>>>>>

1

x1

77

x2

HH

3
z2

jj
z1tt

subject to the relations given by the cyclic derivatives of the potential
x1y1z2 +x2y2z1 +x1y3z1−x2y3z2, namely the relations {x1y3 +x2y2, x1y1−
x2y3, y1z2 + y3z1, y2z1 − y3z2, z1x1, z2x2, z1x1 − z2x2}. Then

sup{cx+
Db(Λ2)

(X,Y ) | X,Y ∈ Db(Λ2)} = 2.

Proof. The claims for Λ0 are clear. For Λ1, the indecomposable projectives have
the following composition structures:

1
x1

���������
x2

��>>>>>>> 2

y

��

3
z1

���������
z2

��>>>>>>>

2 2 3 1
x2

���������

x1
��>>>>>>> 1

−x2���������
x1

��>>>>>>>

2 2 2

We see that the three simple modules satisfy

Ω1
Λ1

(S1) = S2
2 Ω1

Λ1
(S2) = S3 Ω2

Λ1
(S3) = S2.

Consequently every simple Λ1-module is eventually Ω-periodic, and therefore

sup{cx+
Db(Λ1)

(X,Y ) | X,Y ∈ Db(Λ1)} = 1.

For Λ2, the indecomposable projective modules have the following composition
structures:

1
z1

���������
z2

��>>>>>>>

3
y1

wwpppppppppppppp

y3

��

y2

''NNNNNNNNNNNNNN 3−y1

wwpppppppppppppp

y3

��

y2

''NNNNNNNNNNNNNN

2
x2

���������
x1

��>>>>>>> 2
x2

���������
x1

��>>>>>>> 2
−x2

���������
x1

��>>>>>>> 2
−x2

���������
x1

��>>>>>>>

1 1 1 1 1

2
x1

���������
x2

��>>>>>>>

1

z1
��>>>>>>> 1

z2
���������

3



10 PETTER ANDREAS BERGH & STEFFEN OPPERMANN

3
y1

wwpppppppppppppp

y3

��

y2

''NNNNNNNNNNNNNN

2
x2

���������
x1

��>>>>>>> 2
x2

���������
x1

��>>>>>>> 2
−x2

���������
x1

��>>>>>>>

1 1 1 1

If we denote by Mn the module with composition structure

1
x1

���������
x2

��>>>>>>> 1
x1

���������
x2

��>>>>>>> · · · 1
x2

���������
x1

��>>>>>>>

3 3 3 · · · 3 3

(with n composition factors S1 and n + 1 composition factors S3), then one can
show by direct calculation that

Ω2
Λ2

(Mn) = Mn+2.

Now note that

S3 = M0 and Ω3
Λ2

(S1) = M1,

so the rate of growth of the dimensions of the syzygies of these simple modules is
linear. Finally, note that Ω1

Λ2
(S2) is an extension of S1⊕S1 and S3, hence the rate

of growth of the dimensions of its syzygies is at most linear. This shows that

sup{cx+
Db(Λ2)

(X,Y ) | X,Y ∈ Db(Λ2)} = 2. �

Remark. As mentioned, the above example not only shows that Theorem 4.3 does
not generalize to wild cluster tilted algebras. It also shows that the same is true for
Theorem 4.2, that is, there exist wild cluster tilted algebras with infinitely many
non-isomorphic indecomposable Cohen-Macaulay modules. Namely, by Lemma 4.1,
the algebra in example (3) has this property.

We conclude this paper with the following more general questions on the com-
plexity of wild cluster tilted algebras:

Questions. (1) What numbers occur as

sup{cx+
Db(Λ)

(X,Y ) | X,Y ∈ Db(Λ)}

for Λ a cluster tilted algebra of wild type?
(2) Given a wild hereditary algebra H, do all the numbers in (1) occur as

sup{cx+
Db(Λ)

(X,Y ) | X,Y ∈ Db(Λ)}

for some cluster tilted algebra Λ of type H?
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